

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DATA MINING OF EXTREMELY LARGE AD HOC
DATA SETS TO PRODUCE INVERTED INDICES

by

Aaron D. Coudray

June 2016

Thesis Advisor: Frank Kragh
Co-Advisor: Jim Scrofani

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
June 2016

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
DATA MINING OF EXTREMELY LARGE AD HOC DATA SETS TO
PRODUCE INVERTED INDICES

5. FUNDING NUMBERS

6. AUTHOR(S) Aaron D. Coudray

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The purpose of this study is to leverage existing Internet-sized ad hoc data sets by creating an inverted
index that will enable a robust search capability. In particular, this study is focused on the Common Crawl
web corpus. This involves exploring the tools and techniques necessary to effectively traverse this data set,
as well as producing the tools to create an inverted index relationship between the terms and websites
found within web archive files. The primary tools utilized in this process are Apache Hadoop, Apache
MapReduce, Amazon Web Services, and Java. Additionally, methods to enhance this relationship with
other information of interest are investigated in this thesis. Specifically, an index was developed that
contains the added component of term relative location. This inverted index relationship is an essential
component of—and the first step in—creating a robust search capability for a very large ad hoc data set.

14. SUBJECT TERMS
big data, Common Crawl, Hadoop, inverted index, inverted indices, Java, MapReduce

15. NUMBER OF
PAGES

167

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DATA MINING OF EXTREMELY LARGE AD HOC DATA SETS TO
PRODUCE INVERTED INDICES

Aaron D. Coudray
Lieutenant Commander, United States Navy

B.S., Tulane University, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2016

Approved by: Frank Kragh
Thesis Advisor

Jim Scrofani
Co-Advisor

Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The purpose of this study is to leverage existing Internet-sized ad hoc data sets by

creating an inverted index that will enable a robust search capability. In particular, this

study is focused on the Common Crawl web corpus. This involves exploring the tools

and techniques necessary to effectively traverse this data set, as well as producing the

tools to create an inverted index relationship between the terms and websites found

within web archive files. The primary tools utilized in this process are Apache Hadoop,

Apache MapReduce, Amazon Web Services, and Java. Additionally, methods to enhance

this relationship with other information of interest are investigated in this thesis.

Specifically, an index was developed that contains the added component of term relative

location. This inverted index relationship is an essential component of—and the first step

in—creating a robust search capability for a very large ad hoc data set.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. OBJECTIVE ..1
C. ORGANIZATION ...2

II. OVERVIEW ...5
A. BIG DATA ..5
B. HADOOP DISTRIBUTED FILE SYSTEM (HDFS)6
C. MAPREDUCE..8
D. COMMON CRAWL ..11
E. AMAZON WEB SERVICES ..11
F. COMMON CRAWL FILE FORMATS (WARC, WET, WAT)12
G. WEB SEARCH...12

1. Gathering the Data ..13
2. Indexing the Data ...13
3. Querying the Results..14

H. SUMMARY ..15

III. EXPERIMENTAL DESIGN...17
A. CAPABILITY ..17
B. ACCESSING DATA ..18
C. MAPREDUCE JOB DEVELOPMENT ..19
D. INDEXING DATA ...20
E. SUMMARY ..21

IV. IMPLEMENTATION ...23
A. TOOLS ..23

1. Setting up a Hadoop Machine ...23
a. Single-Node Setup ...23
b. Pseudo-Distributed Mode Setup24

2. Virtual Machine Player ...24
3. Java Programming...25

a. Coding..25
b. Packaging ..26

B. BUILDING BLOCKS ..27
1. Components of a MapReduce Job ..27

a. Mapper ...28

 viii

b. Reducer ..28
c. The Driver ...28

2. Word Count with Text Files..29
3. Inverted Index with Text Files ..30

C. APPLICATION TO WET FILES ..32
1. Word Count with a WET File...32
2. Inverted Index with a WET File ...36

D. APPLICATION TO WARC FILES...38
1. Word Count with a WARC File ...39
2. Inverted Index with a WARC File ...43

E. SUMMARY ..43

V. RESULTS ...45
A. MAPREDUCE JOB ON A SINGLE NODE (LOCAL)45
B. MAPREDUCE JOB ON ELASTIC MAP REDUCE (AWS)50
C. SUMMARY ..58

VI. CONCLUSION ..61
A. SUMMARY ..61
B. SIGNIFICANT RESULTS ..61
C. RECOMMENDATIONS FOR FUTURE WORK63

APPENDIX A. BASIC WORD COUNT ..65

APPENDIX B. BASIC INVERTED INDEX ..69

APPENDIX C. WET FILE WORD COUNT ...75

APPENDIX D. WET FILE INVERTED INDEX ..81

APPENDIX E. CUSTOM TUPLE-DATA TYPE ..95

APPENDIX F. WARC FILE WORD COUNT ..97

APPENDIX G. WARC FILE INVERTED INDEX ...105

APPENDIX H. PROJECT INSTALLATION INSTRUCTIONS119

APPENDIX I. PROJECT JAR CREATION INSTRUCTIONS125

 ix

APPENDIX J. RUNNING A PROJECT ON AWS ...129

APPENDIX K. SUPPLEMENTAL ...141
A. ORIGINAL CODE FILES ..141
B. CODE FILES FROM ANOTHER SOURCE142

LIST OF REFERENCES ..143

INITIAL DISTRIBUTION LIST ...147

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Typical Data Write to HDFS. Source: [8]. ..7

Figure 2. Typical Data Replication and Storage. Source: [8].7

Figure 3. Typical MapReduce Data Flow. Source: [8]. ..9

Figure 4. Simplified Diagram of the Hadoop Ecosystem. Adapted from [11].10

Figure 5. Basic Inverted Index <term, (docID, term frequency)>. Source: [14].14

Figure 6. Screen Shot of Common Crawl Data in S3 ...19

Figure 7. VirtualBox Interface ..25

Figure 8. Eclipse IDE Workspace ...26

Figure 9. Example WET File Entry Identifying JWAT WARC Record Objects33

Figure 10. Example WET File with Five Record Entries ...36

Figure 11. Example WARC File Entry Identifying JWAT WARC Record
Objects ...40

Figure 12. Amazon EMR Interaction with Other AWS Services. Source: [33].50

Figure 13. Relationship Between Number of Input Files and Associated
Input/Output File Size ..56

Figure 14. Screen Shot of Eclipse ...119

Figure 15. Screen Shot of Import Action ..120

Figure 16. Screen Shot of Selecting Existing Maven Project120

Figure 17. Screen Shot of Selecting Browse to Root Directory121

Figure 18. Screen Shot of Selecting Project Root Folder ..122

Figure 19. Screen Shot of Selecting POM File and Finishing Import122

Figure 20. Screen Shot of Project Loaded into Eclipse ...123

Figure 21. Screen Shot of Selecting Run Configuration ...125

Figure 22. Screen Shot of Main Tab Actions for Creating a Custom Maven
Build ...126

Figure 23. Screen Shot of Environment Tab Action for Creating a Custom
Maven Build...126

Figure 24. Screen Shot of Console Illustrating a Successful Build...........................127

Figure 25. Screen Shot of AWS Console with S3 Selected129

Figure 26. Screen Shot of S3 Bucket Creation ..130

Figure 27. Screen Shot of S3 Bucket Selected ..130

 xii

Figure 28. Screen Shot of File Upload ..131

Figure 29. Screen Shot of File in S3 Bucket ...131

Figure 30. Screen Shot of AWS Console with EMR Selected132

Figure 31. Screen Shot of Create Cluster Selected ...132

Figure 32. Screen Shot of Advanced Options Selected ...133

Figure 33. Screen Shot of Default Software and Steps Page134

Figure 34. Screen Shot of Custom JAR Additional Step Selected134

Figure 35. Screen Shot of Custom JAR Setup Dialogue ...135

Figure 36. Screen Shot of Completed Software and Steps Page with Next
Selected ..135

Figure 37. Screen Shot of Hardware Setup Page with Next Selected136

Figure 38. Screen Shot of General Cluster Settings Page with Next Selected137

Figure 39. Screen Shot of Default Security Page with Create Cluster Selected137

Figure 40. Screen Shot of Running Cluster with Custom Step Highlighted138

Figure 41. Screen Shot of Custom Step Status with Log Files Highlighted138

Figure 42. Screen Shot of S3 Bucket with Output of Completed Job139

Figure 43. Screen Shot of Reducer Individual Output Files139

 xiii

LIST OF TABLES

Table 1. Comparison of HTML Identification Methods ..42

Table 2. Inverted Index Output File Size from Processing a Single WARC
File ...49

Table 3. Single WARC File Job Performance Characteristics51

Table 4. Inverted Index Output File Size from Processing a Crawl Segment53

Table 5. Single Segment Job Performance Characteristics54

Table 6. Ten WARC Files Job Performance Characteristics55

Table 7. Comparison of Input and Output File Size for Three Tests55

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF ACRONYMS AND ABBREVIATIONS

API application program interface

ARC archive

AWS Amazon web services

CLI command line interface

CSS cascading style sheets

EC2 elastic compute cloud

EMR elastic MapReduce

GB gigabyte

GFS Google file system

GZIP GNU zip

HDFS Hadoop distributed file system

HTML hypertext markup language

HTTP hypertext transfer protocol

IDE integrated development environment

ISO international organization for standardization

JAR Java archive

JSON JavaScript object notation

JVM Java virtual machine

JWAT Java web archive toolkit

MB megabyte

OS operating system

POM project object model

RDFa resource description framework in attributes

RFC request for comments

S3 simple storage system

SQL structured query language

SSH secure shell

TB terabyte

URL uniform resource locator

VM virtual machine

 xvi

WARC web archive

WAT web archive transformation file

WET WinSQL export template file

WWW world wide web

XML extensible markup language

 xvii

ACKNOWLEDGMENTS

I would like to thank my beautiful bride and better half for her always loving me

and supporting me. God has blessed my life with an amazing friend, wife, and mother in

her—without whom I’d be lost. I would also like to thank my advisor, Professor Frank

Kragh, for his support and guidance through this process.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

We live in an age dominated by information technology. Computers and other

devices have gradually become more pervasive over the years, but have exploded in

availability and usage within the past decade. For example, the birth of the smartphone

occurred in 2007 when the first iPhone was released; now, in 2016, there are people who

feel unable to function without one. Among the key elements enabling this rapid rise in

the use of information devices is the improvement of storage technology. Individuals and

organizations can now collect and store large quantities of data at an affordable cost,

which has resulted in an unprecedented volume of data being maintained. There are some

estimates that over 90 percent of the world’s data has been created in the past two years

[1].

Not only are people storing greater amounts of data, but they also have greater

accessibility to the data being stored. As technological capabilities have grown and

become more affordable, the connectedness between people has increased. One of the

easiest ways to share information is through the Internet. This capability has increased so

much that there are now institutions and other organizations looking for ways to harness

the continuously expanding availability of data for learning and other research projects.

One such organization is called Common Crawl, a non-profit organization that for the

past seven years has been providing access to web crawl data to the public [2]. As the

years have passed, Common Crawl has continued to increase the frequency at which

updated data is provided, currently every month. This data is freely available on Amazon

Web Services (AWS) Simple Storage System (S3) [2].

B. OBJECTIVE

The purpose of the work described in this thesis is to investigate the Common

Crawl data, specifically to determine the tools necessary to effectively traverse this data,

as well as develop the tools and techniques required to explore and use this data in

support of government operations. The two fundamental areas that are the foundation for

 2

this project consist of the data format and the architecture in which the data resides, both

of which directly influence how data is accessed. More specifically, this involved an

understanding of a Web ARChive (WARC) file (the format) and the Apache Hadoop

framework (the architecture).

The ultimate goal of this research project is to create a very robust search

capability for the crawl data. In its simplest form, this is the ability to conduct a word or

phrase search and obtain related results; thus, the primary accomplishment of this thesis

will be the first step in the process toward developing this search capability. Specifically,

this first step will be to develop the ability to create an inverted index of the crawl data,

taking the dataset of interest and creating the relationship of words and the websites on

which these words can be found.

The ability to perform word and phrase searches on archived web data is a very

useful capability. This type of search produces results not necessarily obtained using a

standard search engine such as Google or Yahoo! Contained within the WARC file is the

HyperText Markup Language (HTML) of each website crawled, as well as metadata

from the crawl itself [3]. This provides access to not only the plain text of the website but

other potentially useful information (e.g., geo-location of site, author of site, date of

creation/modification). This additional information, or meta-data, of interest is not a

focus of a typical search engine; in addition, these types of search engines are designed to

be useful to the average user and have built-in ranking algorithms to improve search

results. These types of algorithms (e.g., PageRank) help to promote webpages that are

deemed more important and more likely to have useful results. From the perspective of

this research, the most interesting results are not necessarily synonymous with the most

important results determined by a typical search engine. Some of the more interesting

results can potentially be contained in forum posts or other user commentary on a

multitude of websites.

C. ORGANIZATION

This thesis is organized into six chapters. A high-level discussion of the problem

and objective of this research is contained in Chapter I. A discussion of the overarching

 3

concepts related to this project, as well as the tools and services necessary for tackling

this problem, is provided in Chapter II. A detailed discussion of the search method and

execution for the crawl data is discussed in Chapter III. The construction of inverted

index portion of this search tool is contained in Chapter IV. Analyses of the associated

results are presented in Chapter V. Finally, a summary of the work performed in

conjunction with this thesis and recommendations for future work are presented in

Chapter VI.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. OVERVIEW

A. BIG DATA

The Merriam-Webster dictionary defines big data as “an accumulation of data that

is too large and complex for processing by traditional database management tools” [4].

This is a fairly generic definition and may be interpreted differently depending on the

application. In the early 2000s, Doug Laney first proposed the three Vs, which are criteria

that have since become the foundation for defining big data [5]. The three Vs are:

1. Volume: The amount of data.

2. Velocity: The rate at which data is produced or processed.

3. Variety: The type(s) of data.

Recently, two more Vs have been included (i.e., Veracity and Value) in efforts to

express additional desirable characteristics for big data [6]; however, these two additional

characteristics do not fundamentally change the foundational qualities separating big data

analysis from classical data analysis. Even with the original three Vs, the determination

of whether a dataset is considered big data depends on what tools are available. Ten years

ago, a large volume of data may have been on the order of a terabyte (TB) (i.e., one

trillion bytes), but today it is common to have multiple TBs of storage for personal use.

Large volume in today’s terms is more likely to be on the petabyte (i.e., 1,000 TBs), or

even the exabyte (i.e., one million TBs), scale.

For the purposes of this thesis, the fundamental characteristic that makes this

problem a big data problem is the size of the dataset. Not only is the Common Crawl

dataset large, but it is also located within a distributed system. This data, therefore, is a

challenge to analyze in that it is difficult to load into one machine as well as balancing

the cost, latency, and inefficiency of moving that much data around. Because of these

challenges, the classical methods of data mining and analysis do not work. Thankfully, as

the data has grown, the tools used for analysis have evolved and are still evolving to this

day.

 6

B. HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

Unsurprisingly, the ability to store large volumes of data has resulted in other

challenges. One of these challenges has been to ensure long-term availability of that data.

For an individual user, the failure of a single computer is relatively unlikely; however,

when data becomes so large that is requires a storage system comprised of hundreds or

even thousands of machines, failures within that system are no longer the exception—

failures can and will happen. For example, let us assume a single server can stay

operational for three years (approximately 1,000 days); then, with a cluster of 1,000

servers, this results in approximately one failure per day. It follows then, that if this same

system were expanded to a cluster of one million servers, this equates to 1,000 failures

per day. If a system is susceptible to this magnitude failure rate, then data will be lost

unless there is a distributed file system that ensures the availability of the data.

In 2003, a paper emerged from Google which discussed the Google File System

(GFS), a solution to creating a scalable distributed file system [7]. The GFS was designed

to meet Google’s data scalability and reliability objectives based on the data usage

characteristics observed within their systems. Around the same time, Doug Cutting and

Mike Cafarella were working on an independent project called Nutch. These two also

were attempting to overcome data scalability issues, and Google’s paper regarding the

GFS became pivotal in helping to work through some of their own architectural issues

and ultimately laying the groundwork for what is today known as Hadoop [8].

The Hadoop Distributed File System (HDFS) was initially designed to replicate

what the GFS had accomplished [8]. One of the key elements of this architecture is the

ability to handle component failure without losing data, ensuring the long-term

availability of data. The main feature that ensures data reliability is in how data blocks

are created and managed within the HDFS. Stored data is typically broken up into 128

megabyte (MB) blocks and stored three times within the HDFS cluster. These blocks of

data are then managed by the namenode and the datanodes. The namenode keeps track of

the metadata and structure of the HDFS, while the datanodes manage the blocks of data

within the HDFS. This typical write process is shown in Figure 1 [8].

 7

Figure 1. Typical Data Write to HDFS. Source: [8].

The way data blocks are replicated and placed is a tradeoff between data

redundancy and system bandwidth. Typically, two of the three blocks are contained

within the same rack. If a node failure occurs, this scheme allows for improved read and

write bandwidth [8]; however, this scheme alone does not maintain data redundancy in

the event of a rack failure, and a third block is placed on a separate rack [8]. This

replication scheme is illustrated in Figure 2. Ultimately, HDFS does a good job of

ensuring the availability of the data; however, the other challenge of big data is in the

ability to analyze the data.

Figure 2. Typical Data Replication and Storage. Source: [8].

 8

C. MAPREDUCE

As stated, another challenge that arises when dealing with big data is the ability to

analyze the data. Traditionally, data analysis occurs within a single machine. When

dealing with large volumes of data, this is infeasible for multiple reasons. Either the data

is too large to fit on a single machine or it is too inefficient to analyze on a single

machine due to system bandwidth. For example, let us assume that there is a 200 TB

dataset ready for analysis residing on a system with an average disk-read bandwidth of

100 MB per second. This dataset would take approximately two million seconds—or just

over 23 days—to read. This same principle can be applied on a larger scale, limited only

by the network bandwidth. In either instance, the bandwidth constraint results in

prolonged analysis with a single machine and demonstrates the need to have a method to

perform distributed computing.

Shortly after Google published its paper on the GFS, it published another paper

written to address the distributed processing issue [9]. This paper is about a programming

model called MapReduce, designed specifically for use on the GFS for processing large

datasets. Just as before, this paper was utilized by the creators of the Nutch project and

was the foundation for what is today known as Hadoop MapReduce [8].

The purpose of the MapReduce programming model is to take a large job and

process smaller chunks of that job in parallel; this job flow is illustrated in Figure 3.

Overall, there are two basic elements to a job, the first stage being the Map portion and

the second the Reduce portion; within each phase, data is organized into key-value pairs.

The input data is first split up into smaller independent chunks of data. Each of these

smaller chunks is processed by a parallel Map function into key-value pairs. Once the

Mappers are complete, the intermediate output of the Mappers is organized by the key, at

which point the Reducer combines all the results into the final key-value pairs [8].

 9

Figure 3. Typical MapReduce Data Flow. Source: [8].

A simple and common example used to demonstrate this capability is that of a

word count. The goal of a word count is to take an input set of documents and determine

all the words contained within the specified documents as well as the frequency of the

words. For example [9]:

Mapper (String key, String value):
// key: the document name
// value: the document contents
 for each word contained in value:
 emit intermediate key-value pair (word, “1”);

Reducer (String key, Iterator values[count1, count2,
count3, …]):
// key: a word
// values: a list of counts
 int sum = 0;
 for each count in the list of values:
 sum = sum + count;
 emit final key-value pair (word, sum)

The Map function takes each individual word and emits with it a value of one. The

Reduce function then receives a given word and an associated list of ones, one for each

time the word occurred. The Reducer then sums those occurrences, providing a final

count across all documents searched. This simple example demonstrates the parallel

computing power of the MapReduce programming model [9].

 10

MapReduce, in conjunction with Hadoop, is the foundation of what is today

known as the Apache Hadoop framework. MapReduce makes it significantly easier to

write good code for a programmer who may not be familiar with how to handle

parallelization and load balancing [8]; however, it still requires programming knowledge,

specifically with the Java programming language. While there are many organizations

that can benefit from the capabilities of the Hadoop framework, some individual may not

be Java programmers or have much programming experience; therefore, other tools have

been developed that fall under the umbrella of what is commonly referred to as the

Hadoop Ecosystem. Additionally, a utility exists called Hadoop Streaming, which allows

for the use of scripting languages such as Python [10]. A small subset of the existing

ecosystem is depicted in Figure 4.

Figure 4. Simplified Diagram of the Hadoop Ecosystem. Adapted from [11].

The tools in this subset range from providing a way to make it easier for people

who have experience with Structured Query Language (SQL) or other relational

databases (e.g., Hive), rather than the core Hadoop framework, to tools that provide the

ability to use a scripting language rather than a programming language like Java to write

MapReduce jobs (e.g., Pig). Additionally, there are tools to ingest data from other forms

into HDFS (e.g., Flume and Sqoop). While all these tools enhance the robustness of the

 11

overall system, ultimately a Hadoop system is still based on the fundamental components

of MapReduce and HDFS [8].

D. COMMON CRAWL

The Common Crawl is a non-profit organization that provides regular copies of

web crawl data in order to support research and educational endeavors [2]. This vast

repository of data is obtained through the use of Nutch-based web crawlers and is made

publically available on the Amazon S3 service. Web crawling is a method to index the

web and is executed by a multitude of organizations; the most well-known purpose is in

support of search engines. This indexing is essentially accomplished by crawling bots

that visit a list of websites, search those sites for links to other websites, and any links

found are added to the list of sites to visit [2], [12].

To date, the Common Crawl has provided approximately seven years of web

crawls, which contains multiple petabytes of data [2]. From 2008 to 2012, three crawls

were performed and are available in the Archive (ARC) file format. Starting in 2013, the

frequency with which new crawl data was made available increased and is currently at

the rate of once per month. Additionally, in 2013, the data switched to the WARC file

format, and the organization began providing two additional data files. The additional

files are subsets of the WARC file, the first being the WET file, which stands for

WinSQL Export Template file, the second being the WAT file, which stands for Web

Archive Transformation file [2]. A single web crawl is comprised of many WARC files

that are organized into segments. A segment refers to a grouping of Uniform Resource

Locators (URL) that are crawled as a set [12]. The exact number and size of individual

WARC files, as well as segments, are a result of the overall web crawl configuration.

E. AMAZON WEB SERVICES

Amazon Web Services is an entity within Amazon.com that provides a multitude

of services centered on cloud computing (e.g., computing, storage, applications) [13].

With respect to this thesis, its specific products of interest are the S3 and Elastic Compute

Cloud (EC2) services. The S3 service provides for long-term secure storage of data,

while the EC2 service provides a customizable cloud computing resource. Within these

 12

services, the individual files of the Common Crawl data are freely available for

download. Because of the size of the entire crawl file set, large-scale analysis cannot be

accomplished on an individual machine; therefore, this must be accomplished by

downloading files to a distributed system or by using AWS.

F. COMMON CRAWL FILE FORMATS (WARC, WET, WAT)

The WARC file is the base file created by the web crawl. The format for this file

is governed by the international standard ISO 28500 (Information and documentation–

The WARC File Format) [3]. The primary purpose of the WARC file is for the storage of

web crawls. Specifically, it was designed to provide a convention for the concatenation of

numerous records as well as providing standard header information. In essence, a WARC

record consists of two main elements. The first element is the record header, and the

second is the record content. There are numerous potential named fields that may be

contained within any given entry, not all of which are required. Additionally, there are

ways to prevent a website from responding to web crawlers. Overall, there are multiple

types of records contained within each file, not all of which are website responses; as

such, not every entry within a WARC file is ultimately of interest [3].

The WET file is generated from the original WARC file. This file contains the

extracted plaintext from the WARC record and associated header information in order to

identify the originating record. The WAT file contains the metadata about the WARC

records stored in the JSON (JavaScript Object Notation) format. The WET and WAT

files do not contain any new information outside of the originating WARC file but rather

are focused subsets of data generated for ease of analysis [2].

G. WEB SEARCH

Developing a web search algorithm is a quintessential big data problem. It is not

surprising that significant contributions in the area of large-scale data storage and

processing originated from Google, arguably the provider of the most prominent search

engine today. A web search can be broken down into three separate sub-problems:

gathering the information, indexing the information, and ranking the information for

retrieval [14].

 13

1. Gathering the Data

Crawling bots perform the process of collecting the content contained on the

World Wide Web (WWW). This was briefly discussed within the section regarding the

Common Crawl organization. The result of this crawling process is what becomes the

input for the next phase of the search algorithm, which generates the inverted index. With

respect to the Common Crawl, the specific outputs of the web crawl are the WARC,

WET, and WAT files [2].

2. Indexing the Data

The inverted index is the element that contains all the information regarding a

term and where it is located. A simple illustration of an inverted index is the index

contained within a textbook. A textbook index shows the relationship between various

topics contained within the book and the respective pages where those topics can be

found. If this concept is expanded to a set of books or documents, then an index could

represent the relationship between topics or words and all the documents in which they

can be found (e.g., a library catalog). This is demonstrated by the following example

[14]:

Mapper (String key, String value):
// key: the document name
// value: the document contents
 for each word contained in value:
 emit intermediate key-value pair (word, key);

Reducer (String key, Iterator values[doc1, doc2, doc3, …]):
// key: a word
// values: a list of documents
 Linked List locations;
 for each doc in the list of values:
 add <key, doc> to locations;
 sort locations
 emit final key-value pair (key, locations)

This type of relationship is shown in Figure 5, which depicts a basic representation of a

multiple document inverted index, relating terms to their documents with the additional

information of term frequency. When scaled to a level such as the WWW, this could be

represented by each term and at which URLs that term can be found.

 14

Figure 5. Basic Inverted Index <term, (docID, term frequency)>. Source:
[14].

There are many advanced techniques that have been developed to enhance the

content and relationship represented in an inverted index. These techniques can range

from the addition of more basic information such as term frequency or term proximity to

the inclusion of information regarding additional linguistic properties or even anchor text

information [14]. Additionally, since creating an inverted index on the scale of the

WWW results in very large output, there are a multitude of compression techniques to

reduce the size of the resulting index [14], [15]. By improving the robustness of the

inverted index, as well as reducing the size and complexity of the index, the eventual

search capability is greatly enhanced by improving the quality and speed of the retrieved

output.

3. Querying the Results

Fundamentally, the resulting output from a web search consists of the pages

containing the searched for criteria. More complexly, the output is influenced by how the

 15

search algorithm scores the results of the search. Some of the simpler ways in which

results can be scored are based on whether or not the pages contain some or all of the

queried words, and the scoring of the results can further be enhanced by relating the

proximity of those words on the page. One of the most famous ranking algorithms is

PageRank [16], a method that helps to determine the importance of a webpage and which

is subsequently used to boost search results. Some of the newer techniques involve

identifying markup formats contained within webpages, such as Microdata, RDFa and

Microformats [17], [18]. These markup formats can be used to further enhance search

results. Ultimately, the boosting techniques chosen are done so with the intent of

improving the search results for the intended user.

H. SUMMARY

In this chapter, an overview was provided as to why conducting an analysis of the

Common Crawl dataset is a big data problem. Specifically, this is a big data problem due

to the size of the dataset and that it resides in a distributed file system. Additionally, some

history was provided regarding the evolution of big data analysis. In particular, this

included the origins of the Google File System and MapReduce, which later became the

inspiration for the Hadoop Distributed File System and Hadoop MapReduce. These tools

and architecture make it possible to effectively and efficiently analyze large ad hoc

datasets such as the Common Crawl archives. Finally, the framework for the creation of a

robust search capability was briefly discussed.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. EXPERIMENTAL DESIGN

A. CAPABILITY

The goal of this project is to provide the capability to search for and extract data

of interest from the Common Crawl web archives. Specifically, this capability takes the

form of a word-phrase search (input) and provides relevant URLs (output). This is very

similar to a standard search engine (e.g., Google, Yahoo!), except the results are scored

and boosted by different criteria.

Take for example the input search phrase, “United States of America.” The output

result is a list of all URLs meeting the search and scoring criteria. Results are ordered by

overall relevancy as well as other related data of interest. Relevancy basically comes

down to the location and sequence of words within a record. If a record contains all the

words, “United,” “States,” and “America,” it is likely more relevant than a record that

only contains “United” and “States” or just “America.” Moreover, an exact match of

“United States of America” is more relevant than the sentence, “North America contains

fifty States.” So, not only the number of words contained, but also the location of those

words within the record, matter.

Other potential data of interest may also have an impact on the importance of a

result. Examples of this are the geo-location of the site or the author of the site. For the

first example, search results located within the United States may be of less interest than

results external to the United States (e.g., Syria). This can expand into other search

capabilities, such as having a search phrase and determining an author of the search

results, which subsequently may result in looking for any other URLs associated with that

author. Since it is neither efficient nor practical to re-perform the computation necessary

for a specific search every time a new search is performed, the first step in creating a

useful search capability is the generation of a robust inverted index. In order to do this,

the data must be accessible and able to be read.

 18

Since the Common Crawl data is very large and contained on AWS, the tasks of

accessing, reading, and ultimately generating an index becomes more complex. In order

to process crawl data, a program must be developed, written, uploaded to and run on a

cluster of computers contained within the AWS. This makes sense and is practical for

running a large-scale job; however, for the initial development and testing of the tools

necessary to generate an index, this is a cumbersome process and can be accomplished

more efficiently on a much smaller scale. In order to achieve a more efficient process,

smaller chunks of data are downloaded and analyzed on a local machine in order to create

the tools, which are later uploaded to AWS for large-scale analysis. Fundamentally, this

process is broken down into three elements: accessing the data, developing MapReduce

jobs, and running these jobs on the data.

B. ACCESSING DATA

There is a multitude of ways to access public data sets contained within

AWS. Some background regarding access of this data can be obtained at

http://aws.amazon.com/public-data-sets/ [12]. Files can be downloaded through various

HyperText Transfer Protocol (HTTP) or S3 interface tools. Two tools utilized in the

course of this thesis were S3cmd [19] and Cyberduck [20]. S3cmd is a command line S3

interface, whereas Cyberduck has a graphical interface available for interacting with S3.

Within S3, individual compressed crawl files can be downloaded for local use (i.e.,

WARC, WET, or WAT). A typical screen shot displaying a small portion of the Common

Crawl dataset file structure is shown in Figure 6. From this interface, files can easily be

transferred to a local machine. Individual files of interest or entire crawls can be

downloaded.

 19

Figure 6. Screen Shot of Common Crawl Data in S3

C. MAPREDUCE JOB DEVELOPMENT

As previously discussed, there are a multitude of tools that have been developed

for running MapReduce jobs. For the purposes of this thesis, Java was used to develop

the tools necessary to analyze the Common Crawl data. The means by which a job,

written in Java, is run within the Apache Hadoop framework is in the form of a JAR file

[10]. JAR is short for Java ARchive and is a single file that contains all the resources

necessary to run the job. In order to accomplish this, there must be a means to write,

compile and package the Java code into a JAR file as well as ensure all the proper

resources are contained within that JAR file. For example, if code is written that

references external libraries not contained within the standard Java and Hadoop libraries,

then it needs to be included in the JAR file [10]. This is because it cannot be assumed that

the ultimate machine in the cloud has those libraries available to it. Since there are

different ways to specify what is ultimately contained within the JAR file, a method to

include all referenced code must be used. For each of these stages, there are different

tools that can be utilized.

 20

The primary tool for Java coding utilized for this thesis was Eclipse [21]. Eclipse

is a freely available Integrated Development Environment (IDE) that can be used to both

write in Java as well as create the necessary JAR file to run the MapReduce job. One tool

that can be utilized to properly package the necessary resources in the JAR file is called

Maven [22], which is also an Apache project. There are plugins available to provide

Maven functionality within Eclipse. The Maven project provides much more

functionality than just building Java projects, but for the purposes of this thesis, JAR

packaging is the primary use of this tool. With these tools, one can successfully write a

MapReduce job in Java and create the JAR file for execution; however, there still needs

to be a way to actually execute the job and assess the results.

It is possible to create the MapReduce job and run it directly on AWS for testing;

however, this is a very time-consuming method to develop a MapReduce job. It is much

quicker to be able to run small jobs within Hadoop locally. There are multiple ways to

accomplish this, from creating your own HDFS, running a Virtual Machine (VM) with

Hadoop, or even simply processing the job with a local Hadoop client. All of these

methods can be accomplished through freely available sources (e.g., Hortonworks and

Cloudera). For this thesis, the latter two methods were utilized. Utilizing a pre-built VM

is useful in that it provides a lot of functionality with little setup and allows for exercising

the job in an environment that mimics a multiple node system. Running the job through a

local Hadoop client does not provide any of the features gained with the VM but is a very

quick way to test a job and verify the functionality of code.

D. INDEXING DATA

In order to support a robust search capability, there first needs to be a known

relationship between the words contained within crawl files and the associated URL in

which those words can be found. This relationship is the inverted index. Later, this

simple relationship is expanded upon to create a richer relationship; this, in turn, results

in a more robust search capability. Since the WAT file only contains metadata regarding

the WARC files, the files of interest in development of the inverted index are the WARC

and WET files.

 21

The WET file is the starting point for the index. This is because it contains only

the text content of the associated WARC record, naturally an easier form to navigate to

create the index relationship. An inverted index developed solely from the WET files

results in an output that is useable for a search function; however, it does not contain

additional interesting information that can only be found in the WARC file. Once the

capability of creating an index from a WET file can be demonstrated, translating this

functionality to a WARC file and enhancing the index is the next step.

Any record entry contained within a crawl file contains information that is not

relevant or not useful in the development of an inverted index. As such, the tools created

to create the index must be able to appropriately identify and traverse the data contained

within the given file. Additionally, not every record entry in an archive file has to do with

the content of a website crawled. Here is a fictitious example of a WET record entry

associated with a website response:

WARC/1.0
WARC-Type: conversion
WARC-Target-URI: http://www.examplesite.com/
WARC-Date: 2015-08-05T12:27:27Z
WARC-Record-ID: <urn:uuid:23200706-de3e-3c61-a131-g65d7fd80cc1>
WARC-Refers-To: <urn:uuid:92283950-ef2f-4d72-b224-f54c6ec90bb0>
WARC-Block-Digest: sha1:XQMRY75YY42ZWC6JAT6KNXKD37F7MOEK
Content-Type: text/plain
Content-Length: 57

This is an example body extracted for a website response.

For a basic inverted index, there are only two useful fields contained within this example.

Specifically, the useful fields are the WARC-Target-URI, which provides information

regarding the website, and the plain text at the end of the record located after all the

header information. Not only does the developed tool need to be able to identify and

extract these two pieces of information, but the MapReduce job needs to be controlled in

such a manner that an individual record is not broken up between different Mappers.

E. SUMMARY

In this chapter, the overarching concepts for the design of a robust search

capability were discussed. This discussion began with exploration of the capabilities of a

 22

search tool and why having this search capability is useful. Additionally, an overview

was provided on accessing the Common Crawl dataset and MapReduce job creation. The

chapter was concluded with an explanation of how to create an inverted index

relationship utilizing the format of the Common Crawl files.

 23

IV. IMPLEMENTATION

A. TOOLS

Greater detail with respect to the various tools used in the development of the

thesis deliverables is provided in this section. The methods provided here do not ensure

or verify that all necessary supporting software has been installed on the host machine

(e.g., Java).

1. Setting up a Hadoop Machine

Apache Hadoop can be installed and set up in three ways: single node setup,

pseudo-distributed (cluster) setup, and fully-distributed (cluster) setup [10]. The two

methods used as a part of this thesis were single node and pseudo-distributed. The

purpose of setting up a Hadoop machine is to provide a method for program development

and testing without running a Hadoop cluster on AWS. The two methods used in this

thesis are the simplest and most effective means to accomplish this.

a. Single-Node Setup

Using a single-node setup provides the simplest means to develop, test, and debug

MapReduce programs. This setup runs Hadoop as a single Java process and does not

simulate a multiple node cluster [10]. In order to create this type of setup, one simply

downloads and unpacks Hadoop onto the host machine. One method to accomplish this is

with the following commands:

$ wget http://supergsego.com/apache/hadoop/common/hadoop-
 2.7.1/hadoop-2.7.1.tar.gz
$ tar xzf hadoop-2.7.1.tar.gz

The first command (wget) in this sequence downloads the Hadoop source code tarball.

The second command (tar) unpacks the specified file into its destination directory

(~/hadoop-2.7.1/). Hadoop commands can then be directed at this location in order to run

a MapReduce job on a single node. This was the primary method used in this thesis for

program development and testing.

 24

b. Pseudo-Distributed Mode Setup

A pseudo-distributed mode setup also allows for a relatively simple means to test

and debug MapReduce programs. This type of setup simulates a multi-node cluster on a

single machine [10]. This type of installation can be performed manually; however, there

are organizations that provide freely available VMs that contain this Hadoop setup. Two

of the most prominent providers of this service are Hortonworks [23] and Cloudera [24].

Both of these VMs come with installation instructions and require a VM player to be

present.

2. Virtual Machine Player

The VM player used in conjunction with this thesis was VirtualBox by Oracle

[25]. This VM player is freely available and provides all the necessary functionality to

host either of the previously discussed Hadoop VMs. In addition to being free,

VirtualBox is available for Windows, OS X, and Linux. A typical screen shot of the

VirtualBox interface is illustrated in Figure 7. VirtualBox allows the user to load a

number of different VMs; shown in Figure 7 are multiple different Cloudera and

Hortonworks machines that were loaded for testing. The interface is the most significant

difference between a Cloudera and Hortonworks VM. The Cloudera VM is an Ubuntu

machine, which is a Linux operating system with a desktop interface, whereas the

Hortonworks VM is a Red Hat machine that requires the user to use the command line

interface (CLI) to secure shell (SSH) into the VM [23], [24]. Even though the

Hortonworks VM requires a CLI, it comes installed with Hue, which gives the user a web

interface to interact with some of the features of the VM. Ultimately, the user is required

to utilize the CLI to run MapReduce jobs. The question of which is better, the Cloudera

VM or the Hortonworks VM, is a matter of personal preference with respect to the

transfer of files between the host and VM.

 25

Figure 7. VirtualBox Interface

3. Java Programming

There are many tools and methods one can use to develop Java programs. With

respect to this thesis, it was assumed that the reader has no prior Java programming

experience; therefore, the goal was to find tools and methods that were easily accessible

as well as relatively straightforward.

a. Coding

The Eclipse IDE was the primary tool utilized for code development in this thesis.

The Eclipse software tool is available for Mac OS X, Windows, and Linux [21]. A typical

screen shot of the Eclipse workspace is shown in Figure 8. This tool provides many

helpful features, ranging from the way it displays code to the way it integrates with other

libraries to the way it compiles and packages code and much more. The interfaces

provided also eliminate the need for having an extensive understanding of the equivalent

CLI commands.

 26

Figure 8. Eclipse IDE Workspace

b. Packaging

In order to run a custom MapReduce job on AWS, a custom JAR is required to be

uploaded. A JAR file is essentially a way to package Java class files and other resources

into a single file [26]; however, not all JAR files are created equal. Depending on the

resources and libraries required for the Java program, the developer may package the

JAR in such a manner that it assumes the necessary external resources are present or can

be obtained by the host machine. This method provides the advantage of reducing the

size of the resulting JAR file. Another way to package the JAR is to include all the

necessary resources and libraries referenced by the program, such that the JAR can run

regardless of whether or not those dependencies are present on the host machine. As

expected, this results in a significantly larger JAR file. When creating a cluster on AWS,

certain software (e.g., Pig and Hive), and hardware (e.g., cluster size and processing

capability), elements of the cluster can be configured; however, it is not possible to

ensure all the required dependencies are present. Thus, these dependencies must be

included in the JAR file when it is packaged.

 27

In this thesis, Maven was the primary tool used for JAR packaging. Among its

other capabilities, Maven provides different methods for JAR generation and is easily

integrated into Eclipse through a plugin. The ultimate goal is to create a JAR that

contains all the required dependencies and resources at runtime. Some of the common

terminology for this type of JAR is jar-with-dependencies, uber-jar, and fat-jar [22].

Specifics regarding the compilation and packaging of the Maven project are controlled

with the pom.xml file. POM stands for project object model and, in many ways, is the

blueprint of the Maven project [27]. In order to create the appropriate JAR file, the

correct code must be present in the pom.xml. In this thesis, JAR packaging was

accomplished with the maven-shade-plugin.

B. BUILDING BLOCKS

As a part of developing the tools necessary to generate an inverted index of a

WARC file, incremental steps were performed to gain understanding and demonstrate

capability. This primarily consisted of developing MapReduce jobs that could perform a

word count function and an inverted index function on progressively more difficult file

structures.

1. Components of a MapReduce Job

As previously discussed, MapReduce is the software framework utilized for

processing a large dataset. This is done by splitting the dataset into many smaller chunks

of data, which are then processed on separate computers. At a very basic level, this

problem can be thought of as the processing of the individual chunk of data (the Mapper),

the final conglomeration of the results of the mappers (the Reducer), and the overarching

instructions to setup and run the job (the driver). Within a MapReduce job, there are two

methods typically specified by the user: the map method and the reduce method. These

methods are contained within the Mapper and Reducer classes, subsequently discussed in

further detail in this section.

 28

a. Mapper

Mapper is the overarching class that contains multiple methods associated with

key-value pair generation. Overall, the purpose of the Mapper is to take an input key-

value pair and return an intermediate key-value pair. The specific method that maps the

key-value pair is the map method. The map method is the primary element that is

required to be specified by the user and is the task that is performed on each of the

individual chunks of data. Output from the Mappers is then sent to the Reducer, or

optionally a Combiner that can, but is not required to, perform a similar function to the

Reducer [8], [10].

b. Reducer

Reducer is the overarching class that contains multiple methods associated with

generating the final key-value pairs. There are three phases that are commonly thought of

with respect to the Reducer: shuffle, sort, and reduce. Shuffling and sorting have to do

with the intermediate key-value pairs as output from the Mappers. All of these

intermediate key-value pairs are grouped by key and sorted prior to becoming input to the

reducing function. This takes on the form of a key with an iterable list of its values <key,

list(values)>. The purpose of the Reducer is to take this input and reduce it to final key-

value pairs. The method that accomplishes this final stage is the reduce method. This is

another element of the MapReduce job that is typically specified by the user; however,

there are some pre-built Reducers available in the Hadoop libraries [8], [10].

c. The Driver

The overall driver method for the MapReduce job is responsible for setting up the

environment for the job and the execution of the job. There are multiple ways to handle

potential arguments to the job and establish the job parameters. At the most basic level,

this method must create the job: configure the Mapper and Reducer; configure the HDFS

input and output file paths; configure the JAR class; and finally, submit the job [8], [10].

 29

2. Word Count with Text Files

The word count job is often equated to the hello world example for MapReduce

programming. As such, this was the first building block developed with the primary

purpose of demonstrating the ability to create and run a MapReduce job. The basic

premise of this example is to be able to read in a set of text files and output all words

contained within those files and the associated number of times the word occurs. The

associated code for this function is contained within Appendix A.

In this example, the dataset is broken up by line of text. Each line of text is sent to

a map task for processing. Within each Mapper, each line of text is tokenized into

individual words, and then each word is checked against a list of common words. For

each word not contained in the common words list, that word is emitted from the Mapper

as a part of an intermediate key-value pair. Since the overall function is to perform a

word count, that word is emitted with a count of one <term, 1>. Here is a simple example

for demonstration purposes (not considering a list of common words):

// example phrase:
See Spot run, run Spot run.

// the end result of the Mappers will be:
< see, 1>
<spot, 1>
< run, 1>
< run, 1>
<spot, 1>
< run, 1>

Each of these pairs is considered an intermediate key-value pair and is subsequently sent

to the Reducer where it is shuffled, sorted, and reduced.

The Reducer then performs the function of creating the final count for each word.

Continuing with the previous example, we see that the output of the shuffle and sort

phase results in the following:

// results from shuffle and sort phase
< see, (1)>
<spot, (1, 1)>
< run, (1, 1, 1)>

 30

Once the intermediate key-value pairs have been shuffled and sorted, the Reducer

performs its function. In the case of a word count, the function of the Reducer is to add

up the total number of instances of each key (term) and output a final key-value pair in

the form of <term, sum>. Continuing the example, we see that this results in:

// final <key, value> pairs
< see, 1>
<spot, 2>
< run, 3>

The final output is a file, or files depending on the number of Reducers, that contains all

of the final key-value pairs.

3. Inverted Index with Text Files

The next building block was to create a MapReduce job that created a basic

inverted index. This example is similar to the previous word count example in that it also

takes a set of text files as its input. The output is different in that it creates a relationship

between the words contained in all the files and the filenames in which those same words

are located. To demonstrate the capability to add additional information to the index

relationship, this example also outputs the word count for each word with respect to each

individual text file. The associated code for this function is contained within Appendix B.

As in the word count example, the dataset for this process is broken up by line of

text from each individual file. Each line of text is sent to a map task for processing. As

before, each Mapper tokenizes the line of text into each individual word and checks each

word against a list of common words. In this instance, if the word is not filtered by the

common words list, the word is then appended with the filename in which it came from

<word>@<filename>. This appended value becomes the intermediate key and is emitted

from the Mapper with a count value of one <word@filename, 1> to support the

subsequent count determination for each file. Here is a simple example for demonstration

purposes (not considering a list of common words):

 31

// example input from two files:
// filename: file1.txt
// contents:
See Spot run, run Spot run.

// filename: file2.txt
// contents:
Look at Spot run.

// the end result of the Mappers will be:
< see@file1.txt, 1>
<spot@file1.txt, 1>
< run@file1.txt, 1>
< run@file1.txt, 1>
<spot@file1.txt, 1>
< run@file1.txt, 1>
<look@file2.txt, 1>
< at@file2.txt, 1>
<spot@file2.txt, 1>
< run@file2.txt, 1>

As before, each of these intermediate key-value pairs are then shuffled and sorted prior to

being reduced by the Reducer. For the provided example, this phase results in the

following output:

// results from shuffle and sort phase:
< at@file2.txt, (1)>
<look@file2.txt, (1)>
< see@file1.txt, (1)>
<spot@file1.txt, (1, 1)>
<spot@file2.txt, (1)>
< run@file1.txt, (1, 1, 1)>
< run@file2.txt, (1)>

Once the output has been shuffled and sorted, the Reducer sums up the count of each

term from its respective file and outputs a final key-value pair in the form of

<term@filename, sum>. Finishing the example, we see that this results in:

// final <key, value> pairs:
< at@file2.txt, 1>
<look@file2.txt, 1>
< see@file1.txt, 1>
<spot@file1.txt, 2>
<spot@file2.txt, 1>
< run@file1.txt, 3>
< run@file2.txt, 1>

The final output is a file, or files depending on the number of Reducers, that contains all

of the final key-value pairs.

 32

C. APPLICATION TO WET FILES

The next building block was to take the concepts of the word count and inverted

index and apply them to a WET file. At this stage, the problem became significantly

more complex due to the structure and contents of a WET file as compared to a text file.

When dealing with text files, we assumed that each term present in the file was important

to account for, as well as that each individual file was associated with an individual

location. When dealing with the WET files, these assumptions were no longer valid.

Numerous records associated with different website responses are contained

within an individual WET. Additionally, each record has an associated header which

provides information regarding the origin of the record; therefore, as a part of processing

each record within a WET file, it is important to be able to associate each header with its

respective payload but at the same time distinguish between them when processing the

contents. This type of processing also requires that individual records not be broken up

between Mappers. When processing the text files, it is acceptable to break up data chunks

by individual lines of text from the files; however, if this type of data distribution

occurred within the WET files, it results in a dissociation of header and payload

information. Therefore, the MapReduce program must ensure the continuity of individual

records by forcing the smallest data chunk allowable to be an individual record.

1. Word Count with a WET File

As previously discussed, there are two main characteristics of the WET file that

are important in how the file was processed: the ability to maintain the integrity of an

individual record entry and the ability to distinguish between the header and payload

content. Since there is already research being conducted with the Common Crawl dataset,

there are some tools available for processing of WARC files within the structure of a

MapReduce program. Two such tools are the Webarchive Commons repository [28] and

the Java Web Archive Toolkit (JWAT) repository [29]. Both of these tools have features

that can be employed to limit the smallest data chunk to that of an individual record entry

as it is sent to various Mappers. Additionally, each of these libraries provide a multitude

 33

of tools that can be used for data processing. The JWAT repository for WET file

processing was utilized in this thesis.

The JWAT libraries, as a whole, provide tools for reading and writing WARC,

ARC, and GZIP files [29]. The specific tools of interest within the JWAT libraries are

those that allow for reading and processing of the WARC file. Even though a WARC file

is significantly different than a WET file, the overall structure of header and payload are

consistent enough to process with the same tools. The difference is demonstrated in the

specific processing of the header and payload contents.

When a record is read in through the JWAT libraries, it creates an object from the

class WarcRecord. The WarcRecord class of objects is the object that contains the header

and payload fields. The header field is another object from the class of WarcHeader,

which has fields associated with all possible named fields as specified in the WARC ISO.

Each of these named fields is automatically assigned to the object fields when processed

by the JWAT libraries. The payload object contains the remainder of the record entry,

outside of the header information, and has no other specific fields associated with its

contents. A brief example depicting how an individual record is broken up is shown in

Figure 9 [29].

Figure 9. Example WET File Entry Identifying JWAT WARC Record
Objects

 34

In order to access individual fields associated with a header, those fields must

simply be referenced from the respective variable. The following pseudo-code

demonstrates how to access fields within an individual WarcRecord:

// object containing the entire record
// value: the WarcRecord object as read in by the mapper
WarcRecord record = value;

// object containing the record header
WarcHeader recordHeader = record.getHeader();

// object containing the record payload
Payload recordPayload = record.getPayload();

// variable containing the target url field
String recordURL = record.header.warcTargetUriStr;
 // OR
String recordURL = recordHeader.warcTargetUriStr;

These features facilitate navigating and processing the broader fields contained within

each individual record entry; however, the payload must still be processed in more

of a brute force method. Similar to the word count for text files, this was accomplished

using a tokenizer. In later portions of this thesis, a technique utilizing regex

(regular expressions) is used. The associated code for this function is contained within

Appendix C.

Regular expressions are used for pattern matching. This technique is not unique to

Java and can be found in a multitude of different programming languages. In Java the

regex process primarily involves the use of two classes: Pattern and Matcher. The

Pattern class is used to define the string search pattern. The Matcher class is then used to

find the specified pattern within the input sequence. Overall, the regex technique for

pattern matching is a much more versatile and robust method for analyzing character

sequences than a tokenizing method [30].

Processing of the record payload is nearly identical to that as in the first word

count example for text processing. The only difference is that entire payload is processed

and tokenized at a single Mapper rather than an individual line of text as in the first word

count example. This results in the entire payload being broken up into individual words,

which are then checked against a list of common words. If the word is not filtered by the

 35

common words list, it is emitted from the Mapper as a part of an intermediate key-value

pair in the form of <term, 1>. Here is a simple example containing two records

(oversimplified) for demonstration purposes (not considering a list of common words):

// first example record:
WARC-Target-URI: http://www.firstexamplesite.com/

See Spot run.

// second example record:
WARC-Target-URI: http://www.secondexamplesite.com/

Run Spot run.

// the end result of the Mappers will be:
< see, 1>
<spot, 1>
< run, 1>
< run, 1>
<spot, 1>
< run, 1>

In this problem, it is not important which records the words came from since the end

result is an overall word count of all words. As before, each of these pairs is considered

an intermediate key-value pair and is sent to the Reducer where it is shuffled, sorted, and

reduced.

The Reducer then performs the function of creating the final count for each word.

Continuing with the previous example, we see that the output of the shuffle and sort

phase results in the following:

// results from shuffle and sort phase
< see, (1)>
<spot, (1, 1)>
< run, (1, 1, 1)>

Once the intermediate key-value pairs have been shuffled and sorted, the Reducer then

performs its function. In the case of a word count, the function of the Reducer is to add

up the total number of instances of each key (term) and output a final key-value pair in

the form of <term, sum>. Continuing the example, we see that this results in:

// final <key, value> pairs
< see, 1>
<spot, 2>
< run, 3>

 36

The final output is a file, or files depending on the number of Reducers, that contains all

of the final key-value pairs.

2. Inverted Index with a WET File

As with the progression with text file processing, the next step in processing the

WET files was to create a MapReduce job that created an inverted index. The end goal

was to create a relationship between each word contained within the records, the URL of

the respective record, and the relative location of the word in the payload of the

respective record. Each of these pieces of information was important to capture in support

of creating a relationship that can be utilized in a search. Take the example of the phrase

“United States of America,” shown in Figure 10.

Figure 10. Example WET File with Five Record Entries

 37

It is no longer sufficient to have the word location relationship contain the file of

origin, since each WET file contains numerous records from different websites. Finding

“United,” “States,” and “America” on different sites is not nearly as relevant as finding

them all located on the same site. The additional information of word relative position

can then help to identify the word relationships: are they used continuously in a phrase or

are they not? This was accomplished by creating a custom tuple-data type, which

contained the word, URL, and relative location in a single variable. The associated code

for the custom data type is contained in Appendix D, and the code for this function is

contained in Appendix E.

As in the WET file word count example, the dataset for this process is broken up

by record; however, unlike previous examples, this process utilizes a regex pattern

matching technique to parse the record payload. Once patterns are identified, they are

checked against a list of common words. If the word is not filtered, it is then placed into

the custom data type with its related location information in the form of <word, (URL,

location)>. Here is a simple example for demonstration purposes (not considering a list of

common words):

// first example record:
WARC-Target-URI: http://www.firstexamplesite.com/

See Spot run, run Spot run.

// second example record:
WARC-Target-URI: http://www.secondexamplesite.com/

Look at Spot run.

// the end result of the Mappers will be:
< see, (http://www.firstexamplesite.com/, 1)>
<spot, (http://www.firstexamplesite.com/, 2)>
< run, (http://www.firstexamplesite.com/, 3)>
< run, (http://www.firstexamplesite.com/, 4)>
<spot, (http://www.firstexamplesite.com/, 5)>
< run, (http://www.firstexamplesite.com/, 6)>
<look, (http://www.secondexamplesite.com/, 1)>
< at, (http://www.secondexamplesite.com/, 2)>
<spot, (http://www.secondexamplesite.com/, 3)>
< run, (http://www.secondexamplesite.com/, 4)>

 38

As before, each of these intermediate key-value pairs are shuffled and sorted prior to

being reduced by the Reducer. For the provided example, this phase results in the

following output:

// results from shuffle and sort phase:
< at, (http://www.secondexamplesite.com/, 2)>
<look, (http://www.secondexamplesite.com/, 1)>
< see, (http://www.firstexamplesite.com/, 1)>
<spot, [(http://www.firstexamplesite.com/, 2),
 (http://www.firstexamplesite.com/, 5),
 (http://www.secondexamplesite.com/, 3)]>
< run, [(http://www.firstexamplesite.com/, 3),
 (http://www.firstexamplesite.com/, 4),
 (http://www.firstexamplesite.com/, 6),
 (http://www.secondexamplesite.com/, 4)]>

Once the output has been shuffled and sorted, the Reducer consolidates the values for

each key so that each contains unique URLs with multiple locations. This is

accomplished using a hash map and results in a final key-value pair in the form of <term,

{[URL, list(locations)], URL, list(locations), …}>. Finishing the example, we see that

this results in:

// final <key, value> pairs:
< at, (http://www.secondexamplesite.com/, 2)>
<look, (http://www.secondexamplesite.com/, 1)>
< see, (http://www.firstexamplesite.com/, 1)>
<spot, [(http://www.firstexamplesite.com/, 2, 5),
 (http://www.secondexamplesite.com/, 3)]>
< run, [(http://www.firstexamplesite.com/, 3, 4, 6),
 (http://www.secondexamplesite.com/, 4)]>

The final output is a file or files, depending on the number of Reducers, containing all of

the final key-value pairs.

D. APPLICATION TO WARC FILES

The final phase in this approach was the development of the tools and techniques

necessary to create the same tools (i.e., word count and inverted index) for the WARC

file. While many of the concepts utilized for processing the WET files can be directly

applied to the WARC file, there are many additional elements contained within a WARC

file that require consideration.

 39

There are two overarching issues that need to be addressed in order to effectively

process the WARC files. The first is that the WARC file contains multiple types of

records, (e.g., response, request, and metadata) beyond that of the record-of-interest (i.e.,

response) [3]. The second issue is that the payload for the records-of-interest are no

longer plain text; they contain the complete scheme-specific response to include network

protocol. For example, the response from a website following an HTTP scheme contains

all elements as defined by the HTTP standard (RFC 2616) [31]. The issue of record type

identification was handled with the JWAT tools introduced for processing of WET files;

however, handling of the payload required different techniques that had, up to this point,

not been explored.

Websites can be comprised of a multitude of different schemes (e.g., HTML,

XML, Compressed Files). The format of the scheme-specific response is different, and

for as many different types of sites/files that are crawled, there are as many different

responses obtained. Because each of these categories of responses must be handled (i.e.,

identified and parsed) differently, the focus of this thesis is on creating the capability to

handle HTML-type responses.

1. Word Count with a WARC File

As discussed, the first capability difference in processing a WARC file versus a

WET file is to be able to identify the response entries. An example response WARC

record entry is shown in Figure 11. Utilizing the same JWAT libraries as before, we can

extract the WARC-Type field from the record header. This is the header field that

identifies which type of record entry follows. The following pseudo-code then shows

how the records-of-interest can be identified for processing:

Mapper (LongWritable key, WarcRecord value):
// key: not used
// value: the warc record entry
 if value.header.warcTypeStr equals response
 // process record
 else
 // go to next record

 40

Figure 11. Example WARC File Entry Identifying JWAT WARC Record
Objects

Once the proper records are identified, the extraction of the payload is performed

in the same manner as for the WET files. The next step is identifying whether or not the

payload contained HTML and, if so, the subsequent extraction of the target text from

within the HTML payload. The associated code for this function is contained within

Appendix F.

The primary tool utilized to parse through the HTML payload was jsoup, which is

a Java library for HTML parsing [32]. The jsoup library provides tools to perform tasks

 41

such as parsing, scraping, and extracting various attributes from HTML. This library was

successfully utilized to both identify HTML content and extract the text body of the page.

Each of these functions was accomplished with different jsoup tools; the more complex

task being the identification of HTML.

RFC 2616 defines certain fields that should be contained within a HTTP response

header. One of these fields is called Content-Type, which defines the media type of the

response [31]. Utilizing jsoup, we extracted this content field and checked for the

keyword html in order to assess whether or not the content body was HTML. This was

accomplished by a select function that was used to perform a Cascading Style Sheets

(CSS) query for the appropriate meta tag in the content. If the correct meta tag was found,

it was extracted into a string and checked against html as a substring. If this check was

positive, the process continued to extract the text from the payload; otherwise, it was

assumed the checked record did not contain HTML and was subsequently skipped. It was

later determined that some HTML records were missed utilizing this method and another

approach was investigated. This technique is still useful in that it demonstrates the

process that would likely be utilized in order to further extract fields-of-interest within

HTML code.

Rather than look for specific meta tags associated with HTML content, it seemed

reasonable to attempt to identify the <html></html> tags within the record. These tags

mark the beginning and end of the HTML structure and are present regardless of the

specific character set or content type utilized by the code. In order to do this, the select

function was again utilized. This time the CSS query was set to look for the <html> tag.

If this tag is found, it returns the entire content, including the specified tag; however, if

the <html> tag is not found it returns null. This allowed for a simple comparison against

null to determine the presence of an HTML record. In principle, this method was

expected to identify more HTML records than the method triggering off of the Content-

Type meta tag. A simple analysis on a random WARC file was performed to provide a

basic comparison of these two methods. The results of this analysis are shown in Table 1.

 42

Table 1. Comparison of HTML Identification Methods

Record Feature No. Record Feature No.

Contain “Content-Type” Tag 32,210 Contain “html” in Tag 32,131

No “Content-Type” Tag 21,292 Contain <html> Tag 32,210

Total Entries 53,502

Within the WARC file there were 53,502 response records. The first analysis was

to determine how many of the response records contained the Content-Type meta tag and,

subsequently, contained the string “html.” The second analysis was to determine how

many of the response records contained the <html> tag. Not shown in this data is the fact

that within this one WARC file there are over two hundred different values found within

the Content-Type meta tag. In conclusion, both methods were found to capture all or

almost all of the HTML response records, with the method identifying the <html> tag

performing slightly better.

If the record payload was identified as an HTML response, it was processed for

content in support of the word count function. In order to extract this content, a jsoup

function was utilized that accesses the contents contained within the body element of the

HTML. Once the payload body was obtained, it could be processed in a manner similar

to previous examples. For this function, the method of pattern matching through use of

regex was utilized to identify distinct words. Once words had been identified, they were

passed through the process of checking for common words and then being emitted from

the Mapper as an intermediate key-value pair. Upon emission, they were sent to the

Reducer for the shuffle, sort, and reduce process.

Lastly, the Reducer performed the function of creating the final count for each

word. As with each word count function, this meant the Reducer added up the total

number of instances of each key (term) and output a final key-value pair in the form of

<term, sum>. The final output is a file, or files depending on the number of Reducers,

that contains all of the final key-value pairs.

 43

2. Inverted Index with a WARC File

As with previous examples, the next step in processing the WARC files was to

develop the MapReduce job that created an inverted index. Similar to that for the WET

files, this inverted index built the relationship between each word contained within a

WARC record, the associated URL of that record, and, finally, the relative location of the

word within the payload of that record. This implementation also utilized the custom

tuple-data type, and its associated code can be found in Appendix G.

This tool essentially resulted in a combination of the WET file inverted index and

WARC file word count tools. The content and forming of the index is nearly identical to

that developed for the WET files, that being the use of a tuple-data type to group the

term, URL, and relative location. The key difference is in how the payload was parsed in

order to determine which terms were present. Parsing of the payload was nearly identical

to the methods developed in the WARC word count function. The WARC inverted index

tool is essentially formed by combining two techniques: the inverted index relationship

using a custom data type and parsing the WARC payload.

As in the WARC file word count example, the dataset for this process is broken

up by record. Additionally, this process utilized a regex pattern matching technique to

parse the record payload. Once patterns are identified, they are checked against a list of

common words. If the word is not filtered, it is then placed into the custom data type with

its related location information in the form of <word, (URL, location)>. Each of these

intermediate key-value pairs are then shuffled, sorted, and reduced in a manner similar to

previous examples. Ultimately, the Reducer performs the consolidation of the records so

that each key contains unique URLs with multiple locations and outputs the final key-

value pair to a file or files. The structure of the WARC inverted index is the same as the

pseudo-code examples provided during the discussion of the WET file inverted index.

E. SUMMARY

The tools used in the development of the deliverables of this research were

presented in this chapter. This included discussion of the various tools created in the

development of a MapReduce job capable of generating an inverted index from a WARC

 44

file. Specifically, this included jobs capable of performing a word count and creating an

inverted index on a text file and jobs capable of performing a word count and creating an

inverted index from a WET file. This culminated with the tools capable of performing a

word count and creating an inverted index on a WARC file. Selected code developed as a

part of this thesis has been included within the Appendices, with guidance for loading

source code and generating JAR files contained within Appendix H and I, respectively.

The complete project files are available in the Supplemental Material (Appendix K).

 45

V. RESULTS

Testing was conducted throughout the design and implementation process for this

work. Each of the building blocks discussed in Chapter IV was tested in a local single

node Hadoop machine as well as within AWS. This process was used to not only verify

operation but also to identify issues and improve overall functionality. This culminated

with the evaluation of the job designed to generate an inverted index from WARC file(s).

A. MAPREDUCE JOB ON A SINGLE NODE (LOCAL)

As previously discussed, speed is the primary benefit of running a local single

node Hadoop machine. It is possible to perform multiple iterations—alter code, create an

updated JAR file, run that job, and observe the results—in the same period it takes to run

one equivalent job in AWS. This makes local testing a much more efficient way to locate

and correct errors as well as to improve functionality.

The first objective was to obtain a MapReduce job that successfully created an

inverted index utilizing a single WARC file as an input. This demonstrated three things:

(1) that the WARC file could be properly read and parsed in a MapReduce job; (2) that

the inverted index relationship between term and URL could be extracted; and (3) that the

additional information of term relative position could be captured and incorporated into

the index. The input was controlled as a single WARC file in an input directory, and the

output was controlled with a single Reducer, resulting in a single output file. The

following is a small excerpt from the output:

monteray : http://www.tripadvisor.nl/SmartDeals-g51891-
Grants_Pass_Oregon-Hotel-Deals.html:853,
http://www.ratebeer.com/maps/print-8702.htm:82,

monterblanc : https://ms.wikipedia.org/wiki/Saint-Nicolas-
du-Tertre:437,

monterchi : http://saterdesign.com/product-
category/concrete-home-
plans/?dir=desc&mainlevelmaster=184&order=plantotal_living_
sqft&planbathrooms=102&plangaragedoors=189:381,

montere : https://da.wikipedia.org/wiki/Westwall:2476,

 46

monterescu : http://www.haaretz.com/misc/comment-page/eh-
makes-no-sense-the-military-doesnt-rule-after-the-election-
19.2142582:1212, http://www.haaretz.com/misc/comment-
page/quot-patricks-brother-quot-what-plain-quot-facts-quot-
would-they-be-19.1046099:1206,
http://www.haaretz.com/misc/comment-page/population-growth-
stops-at-6-billion-19.1213118:1200,

monteret : https://da.wikipedia.org/wiki/Westwall:2251,

monterey : http://lubbockonline.com/filed-online/2014-05-
03/region-i-high-school-baseball-playoff-pairings:421, 416,
419,
http://www.groworganic.com/fertilizers.html?garden_size=529
&limit=120&organic_use=514&solution_fertilizer=349:2217,
2038, http://www.snagajob.com/job-search/j-
retail+sales+consultant+monterey+ca/w-93955/q-atandt:176,
http://www.silentpcreview.com/forums/viewtopic.php?t=66667p
=579171:778, 1224, 2372,
http://streema.com/users/sofivanmensvoort:439,
http://www.spokeo.com/Harry-Eldridge:1260,
https://www.groupon.com/local/san-diego-country-estates-
ca/wineries:443,
http://cars.automotive.com/toyota/highlander/2007/compare/t
rims/t3-12-4/:530,

The last entry in the previous example is for the term monterey. This entry has

been colored to facilitate identifying the different inverted index relationships. Each URL

that contained monterey within its text is shown in a different color, for a total of eight

different URLs in the single WARC file used as input. The term and locations are

separated by a colon (:), as well as the additional information of the term relative location

(underlined). For instance, the first entry of lubbokonline.com contains the term monterey

at three different locations: the 421st, 416th, and 419th position. This demonstrated that the

MapReduce job successfully accomplished its purpose on a single file.e These results

also showed that the colon may not have been the best choice in delimiter, since it is

often contained in URLs; it was subsequently changed to the vertical slash (|).

The next step was to test the ability to index multiple input files from the same

directory as well as from different directories. A single directory with multiple files is

equivalent to this structure:

 47

../input---warcFile1.warc.gz
 |
 |-warcFile2.warc.gz
 |
 |-warcFile2.warc.gz

Additionally, the job needed to be able to differentiate between WARC, WET, and WAT

files since they are all contained within the Common Crawl dataset. A file structure

containing one or more subdirectories with multiple files is equivalent to this structure:

../input---segment1---warcFile1.warc.gz
 | |
 | --wetFile1.warc.wet.gz
 | |
 | --watFile1.warc.wat.gz
 |
 |-segment2---warcFile2.warc.gz
 |
 --wetFile2.warc.wet.gz
 |
 --watFile2.warc.wat.gz

It is possible to specify multiple input paths when creating a MapReduce job, but

this becomes very cumbersome and unrealistic when expanded to the scale of analyzing

hundreds of WARC files. As such, there are two common ways to handle this problem:

(1) path filtering and (2) globbing [8]. Path filtering is a more robust technique that

essentially examines entire file paths and can be matched using the regex technique in

order to identify the desired files to input. Globbing is a simpler technique that has some

basic matching capability, including wildcards, (i.e., the (*) character), to search file

paths. This technique is not as flexible as path filtering and works better if the file

structure is uniform, such as in the example provided. Because the Common Crawl

dataset is well structured within a given crawl, the technique of globbing was tested and

used.

In order to test the globbing capability, a similar multiple directory structure was

created locally with multiple WARC files and other non-WARC type files. These

additional files were present to ensure the specified glob could properly identify the

desired files. The appropriate input path glob to analyze all WARC files for the previous

example is:

input/*/*.warc.gz

 48

This glob searches any folder one level deep into the input folder for any file with the

extension of warc.gz. Ultimately, the MapReduce job was successful in handling multiple

WARC files contained in separate subdirectories. One key finding from this testing was

that the resulting output files grew rapidly in size and presented problems on multiple

levels. The first level of concern was the performance of the MapReduce job,

specifically, how many Reducers to use. Initially, this job only utilized one Reducer,

which not only becomes a bottleneck for task processing but also becomes related to the

issue of memory. As the number of input files grows, the amount of memory utilized

grows, and this is particularly a concern for the Reducers. The Mappers are processing

relatively smaller chunks of data, but the resulting intermediate key-value pairs increase

in number and size for processing at the Reducers. Not knowing how this job would

perform on AWS, only the issue regarding the number of Reducers was addressed.

Specifically, the number of Reducers was increased.

By increasing the number of Reducers, we effectively split the intermediate key-

value pair space in size by the number of Reducers. There are methods and rules of

thumb to help determine the appropriate number of map and reduce tasks based on the

job being performed [10]. The intent of these methods is not necessarily to execute the

job in the fastest way possible but to exercise the most efficient use of computing power

and resources. These methods were not explored as a part of this thesis. One side effect of

having multiple Reducers is that each reducer creates its own output file. There is no

particular coordination between the Reducers to organize intermediate key-value pairs.

This can be specified through the use of a Partitioner [10].

For ease of analysis, it was decided to partition the intermediate key-value pairs

such that the resulting output was organized by the first character of each term. This

resulted in specifying 37 partitions, one for each number and character in the English

alphabet and one catch-all partition. This, in turn, meant that 37 Reducers were required,

one for each partition. The resulting output files for the MapReduce job were then

organized by first character, and within each output file, the terms were sorted

alphabetically. This updated job was then performed on a different individual WARC

file. A summary of output file sizes for a single WARC file is shown in Table 2. This

 49

data is the result of processing a single WARC file with an input file size of 887.5 MB.

The size of the output files comes to a total of 1.99 gigabytes (GB), with the largest

individual output file at 184.4 MB.

Table 2. Inverted Index Output File Size from Processing a Single WARC
File

File Character Size (MB) File Character Size (MB)

00000 0 29.6 00019 j 26.7

00001 1 54.0 00020 k 24.2

00002 2 56.4 00021 l 72.5

00003 3 23.3 00022 m 101.4

00004 4 19.2 00023 n 55.7

00005 5 18.7 00024 o 56.3

00006 6 12.5 00025 p 131.4

00007 7 11.4 00026 q 12.1

00008 8 13.9 00027 r 88.1

00009 9 11.8 00028 s 184.4

00010 a 11.0 00029 t 104.5

00011 b 86.4 00030 u 40.1

00012 c 172.4 00031 v 37.6

00013 d 84.8 00032 w 57.2

00014 e 72.6 00033 x 10.7

00015 f 85.3 00034 y 20.7

00016 g 57.8 00035 z 9.3

00017 h 72.4 00036 (other) 3.3

00018 i 55.6

 50

Part of the large difference between the resulting total output file size and input

file size is that the resulting output file is not compressed, whereas the input files are

compressed. Specifically, in the form of a GZIP compressed file. Prior to addressing any

of these concerns, it was important to first test the MapReduce job on AWS to verify that

it worked in a distributed system by accessing the Common Crawl files.

B. MAPREDUCE JOB ON ELASTIC MAP REDUCE (AWS)

Amazon Elastic MapReduce (EMR) is the primary tool for running MapReduce

jobs within AWS. The EMR service provides coordination between S3 and EC2 in order

to create a Hadoop cluster (see Figure 12). Scalable EC2 instances are created as

computational nodes, while S3 is used for input and output storage as well as for loading

the custom MapReduce job. A more detailed walkthrough of running a job within AWS

is provided in Appendix J [33].

Figure 12. Amazon EMR Interaction with Other AWS Services. Source: [33].

The first test was to validate performance of the MapReduce job on a single

WARC file. Unlike before, when this file was downloaded to local storage, this test

 51

involved specifying an input path pointing to the Common Crawl public data set. The

following is an example input path for a single WARC file:

s3n://aws-publicdatasets/common-crawl/crawl-data/CC-MAIN-
2016-07/segments/1454701145519.33/warc/CC-MAIN-
20160205193905-00000-ip-10-236-182-209.ec2.internal.warc.gz

This path points to a single file from a 2016 crawl. In order to analyze this file, this

specified path becomes an input to the custom JAR arguments as seen in Appendix I.

Some of the key job characteristics and performance data are listed in Table 3.

Table 3. Single WARC File Job Performance Characteristics

Category Characteristic Value

Hardware Instances: Master m3.xlarge (1)

 Core i2.2xlarge (3)

Processing Time: Elapsed Time 20 minutes

 Normalized Instance Hours 56 hours

File Size: Input 887.5 MB (compressed)

 Output 1.99 GB (uncompressed)

The data in Table 3 is broken down into three categories of information. The first

category, hardware instances, relates to the EC2 instance created to perform the

MapReduce job. The master instance is the instance which managers the cluster and

includes running the namenode service for the MapReduce job. The core instance

contains all the nodes of the cluster; this includes running of the datanodes and is where

the map and reduce tasks are executed [33]. The second category, processing time, has to

do with time metrics related to job completion. Elapsed time refers to the real time that

the MapReduce job took to complete, whereas the normalized instance hours relates to

the computational complexity of the job. More specifically, this is related to type of size

of the instances selected for the cluster [33]. As the cluster size increases, more

parallelization is occurring and, therefore, more processing occurs in the same period of

 52

elapsed time. The last category, file size, corresponds to the input and output file sizes.

The first two categories provide a point of comparison between this and any subsequent

jobs. The last category shows that this job resulted in the same output size as the single

WARC file job performed on the single node (local). The following is a small excerpt

from the output:

montereyherald|http://www.montereyherald.com/20121113/spca-
for-monterey-county-urges-adoption-of-companion-
horses|405,1206,|

montereysuggest|http://monterey.org/en-us/City-
Hall/Newsroom/ItemId/166|671,|

monterey|http://digital.library.okstate.edu/chronicles/v019
/v019p014.html|9810,9627,9541,8599,8749,8891,8975,9346,|htt
p://www.globusjourneys.com/Vacation-Packages/Tour-North-
America/National-
Parks/?year=2012&gaparm=/Product.aspx?trip=3AVF,.,/Product.
aspx?trip=3AD|3717,1609,3709,1405,1603,1473,1482,|http://ia
n.umces.edu/press/location/rookery_bay/|671,|http://caselaw
.findlaw.com/us-supreme-
court/165/675.html|7302,|http://www.reforma.org/elections_s
p13|337,|http://www.thecarconnection.com/make/2003,jaguar,p
rice-range-0-55000|1141,|

Based on this output, we see that the MapReduce job successfully performed as expected

on AWS. The next step in testing was to attempt to process multiple WARC files.

In order to test processing multiple WARC files, a full segment of crawl files was

selected. In this case, the segment that was chosen was comprised of one hundred WARC

files. The resulting output file sizes for this analysis are shown in Table 4. This data is the

result of processing a segment with a combined input file size of approximately 64.98

GB. The size of the output files comes to a total of 140.13 GB, with the largest individual

output file at 14.1 GB. As previously mentioned, one significant factor in this difference

between input and output file size is that the output files are not compressed, while the

input files are compressed. Some of the key job characteristics and performance data are

listed in Table 5.

This job was created using a larger number of instances of a higher performance

level. The single segment WARC job was completed in 336 normalized instance hours

as compared to the previous job of a single WARC file in 56 hours. Additionally, the

 53

output file size (140.13 GB) is significantly greater for this job as compared to the output

file size of 1.99 GB from the previous job. Now that the MapReduce jobs have been

verified to function within AWS, it was worth investigating compression of the output.

Table 4. Inverted Index Output File Size from Processing a Crawl Segment

File Character Size File Character Size

00000 0 255 MB 00019 j 1.9 GB

00001 1 429.5 MB 00020 k 1.7 GB

00002 2 589.3 MB 00021 l 5.5 GB

00003 3 438 MB 00022 m 8 GB

00004 4 298.9 MB 00023 n 4 GB

00005 5 286.5 MB 00024 o 4.1 GB

00006 6 212.7 MB 00025 p 10 GB

00007 7 296.7 MB 00026 q 798.9 MB

00008 8 222.1 MB 00027 r 6.6 GB

00009 9 208.8 MB 00028 s 14.1 GB

00010 a 8.8 GB 00029 t 7.8 GB

00011 b 6.5 GB 00030 u 2.9 GB

00012 c 13.2 GB 00031 v 2.6 GB

00013 d 6.4 GB 00032 w 4.3 GB

00014 e 5.3 GB 00033 x 422.7 MB

00015 f 5.8 GB 00034 y 1.4 GB

00016 g 4.5 GB 00035 z 566.4 MB

00017 h 5.4 GB 00036 (other) 0 MB

00018 i 4.3 GB

 54

Table 5. Single Segment Job Performance Characteristics

Category Characteristic Value

Hardware Instances: Master m3.2xlarge (1)

 Core i2.8xlarge (5)

Processing Time: Elapsed Time 43 minutes

 Normalized Instance Hours 336 hours

File Size: Input 64.98 GB (uncompressed)

 Output 140.13 GB (uncompressed)

In order to alter the compression setting of a MapReduce job, the job

configuration must be changed. There are a number of configuration variables

that are applicable to compression [10]; however, in this case the goal was

to only compress the final output from the Reducers. In order to do this,

two job configuration variables required manipulation. The first variable was

mapreduce.output.fileoutputformat.compress, which has a default value of false

indicating no compression [10]. By updating the job configuration setting and

setting this variable equal to true, we tell the system to compress the output

of the reducers. The second variable that needed to be updated was

mapreduce.output.fileoutputformat.compress.codec. This variable indicates which

type of compression codec to use; for this thesis the GZIP compression codec was

utilized [10]. After modifying these job configuration settings, we created and ran a new

JAR file on the same single segment of WARC files as before. With this change, the

resulting output was reduced from 140.13 GB to 59.02 GB, with the largest individual

output file being 6 GB.

At this point, it was clear that the MapReduce job worked as designed and was

able to create the inverted index relationship across multiple crawl files. Before

attempting to process an even greater portion of the crawl data, we evaluated ten WARC

 55

files in order to try to establish a relationship between input file space and output file

space. The key job characteristics related to this evaluation are given in Table 6.

Table 6. Ten WARC Files Job Performance Characteristics

Category Characteristic Value

Hardware Instances: Master m3.2xlarge (1)

 Core i2.8xlarge (5)

Processing Time: Elapsed Time 21 minutes

 Normalized Instance Hours 336 hours

File Size: Input 8.1363 GB (uncompressed)

 Output 7.4620 GB (compressed)

Additionally, the test for one WARC file was reperformed with the MapReduce

job performing compression on the output. The overall results of the combination of these

three tests are shown in Table 7 and plotted in Figure 13:

Table 7. Comparison of Input and Output File Size for Three Tests

No. of Files Input Size Output Size

1 0.8875 GB 0.7464 GB

10 8.1363 GB 7.4520 GB

100 64.9778 GB 59.2027 GB

 56

Figure 13. Relationship Between Number of Input Files and
Associated Input/Output File Size

From these results, it appears as though there is a nearly linear relationship

between the number of input files and the resulting output file size. Initially, it was

thought that there may be a less-than-linear relationship as the input space increased due

to the reduced number of new words encountered. This assumption may correlate to the

slight bend between one and ten files; however, upon further investigation, the URL

content drives the output file size of the inverted index relationship. Taking a small

portion of previous output provided as an example:

monterey|http://digital.library.okstate.edu/chronicles/v019
/v019p014.html|9810,9627,9541,8599,8749,8891,8975,9346,|

By performing a cursory visual inspection of the output, we see that it appears that the

majority of the terms are often less than ten characters in length, whereas the URL is

often greater than three times this amount. Because each record entry contained within a

WARC file is from a unique URL, as each term is found, the inverted index entry grows

at least by the length of the URL. It then became clearer as to why the tests indicate a

nearly linear relationship between the number of input files and the output file size.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

Fi
le

 S
iz
e
 (G

B
)

Number of Input Files

Input File Size

Output File Size

 57

This relationship in output file size growth was not anticipated, and the

MapReduce job was not optimally designed and set up with respect to the number of map

and reduce tasks. In addition, the EC2 cluster was not optimized based on the input

space. Consequently, it was unclear as to how large this job could scale to before failure

occurred due to the exhaustion of computing resources. Based on the size of the output

files for one crawl segment and the fact that a single crawl may contain a hundred

individual segments, it was expected that the use of 37 Reducers would eventually lead to

job failure. This was later verified by attempting to run the same MapReduce job across

three segments.

When attempting to run this job across multiple segments, totaling approximately

1 TB of input data, the job failed to complete. Specifically, the Reducers fail when they

experience a Java Heap Space Error. Essentially, this means that the Java Virtual

Machine (JVM) running the Java application has ran out of heap memory [34]. In other

words, the JVM requires more memory to run than has been allocated to its heap space.

Java heap space is a modifiable attribute but is not a part of the job configuration of a

MapReduce job [35]. The default heap space is a configuration setting associated with the

host machine. In this case, it depends on the instance type used when setting up the

cluster on AWS and is modifiable by additional configuration steps [33]. While the

methods to optimize the MapReduce job and computing resources were not investigated

as a part of this thesis, multiple basic modifications to the job were attempted in order to

evaluate courses of action.

In efforts to overcome the heap space error, two variables were manipulated. The

first variable was that of the EC2 instance type [36]. Specifically, different models of the

R3 Memory Optimized (8xlarge) and I2 Storage Optimized (8xlarge) instances were

attempted. When configuring each of these instances, both were evaluated utilizing five

and ten core instances. In addition to trying different instance types, the second variable

considered was the number of Reducers exercised. The Apache Hadoop Application

Program Interface (API) documentation provides a general rule of thumb for the

setNumReduceTasks() method [10]. The maximum number of reduce tasks evaluated as a

part of this testing was two hundred. None of these efforts changed the overall outcome

 58

of the MapReduce job. Each time the memory error was received, it occurred after the

completion of the map phase and during the reduce phase of the job; however, depending

on the cluster makeup and number of Reducers, the point at which the failure occurred

varied within the reduce phase. This was verified by reviewing the output logs from the

jobs.

The only variable not evaluated was that of changing the heap space configuration

settings. Based on AWS documentation, it appears as though this can be accomplished by

creating a JSON file containing the appropriate configuration commands [33]. This file is

then subsequently uploaded when configuring the cluster settings. It is possible that

increasing the Java heap space will allow indexing of a larger set of WARC files;

however, it is also possible that attempting to index an entire crawl with one MapReduce

job requires more resources than available within the EC2 instances even if optimized for

the job. This then requires taking a different approach in order to create an entire inverted

index from a complete crawl.

One possible course of action is to perform the MapReduce job as is but on

smaller subsets of the crawl files. Another possible course of action is to approach the

index in a slightly different manner. For example, create a MapReduce job to index all

the URLs from the input space and use the resulting output as an input to a second

MapReduce job, which performs the inverted index on the same input space. By

following this sequence of MapReduce jobs, we accomplish a level of URL compression

prior to processing the final output, thus reducing the overall output size. This sequence is

a method of cascading MapReduce jobs in order to achieve the desired end state. An

example of how to index URLs using a global counter for the Reducers is provided in the

Supplemental Material (Appendix K).

C. SUMMARY

The results obtained from evaluation of the WARC inverted index MapReduce

job was presented in this chapter. This included evaluation of performance on a single

machine, as well as performance on AWS. In this analysis, the indexing tool was found to

correctly process varying quantities of WARC files from different file structures and

 59

ultimately produced the desired inverted index relationship; however, once the job was

scaled to larger portions of a crawl set, the MapReduce job failed due to errors associated

with the Java heap space. Finally, a discussion was presented of some of the efforts

associated with addressing this error, as well as potential courses of action for correction.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

VI. CONCLUSION

The ultimate goal of the research project this thesis supports is to create a very

robust search capability for the Common Crawl data set. The first step in this process,

and the primary goal of this thesis, was to develop the ability to create an inverted index

from the Common Crawl dataset. A MapReduce job was implemented that successfully

traverses WARC files, extracts the payload of the appropriate record entries, and creates

an enhanced inverted index relationship consisting of the term, the URL located on, and

the relative location within, the respective URL. This capability was demonstrated on

individual WARC files, as well as a crawl segment consisting of one hundred WARC

files; however, further work is necessary to scale this capability to an entire crawl.

A. SUMMARY

A building block approach in the development of a tool capable of creating an

enhanced inverted index relationship from Common Crawl WARC files was employed.

This process began with the exploration of the Common Crawl file set, the analysis of

data within the Hadoop Distributed File System, and resulted in the development of a

series of MapReduce jobs with increasing capability. The first of these tools consisted of

simple MapReduce jobs that performed a word count as well as creating an inverted

index from text files. The second set of tools transitioned to conducting the same set of

tasks but on WET files. Finally, this process concluded with the development of the

MapReduce jobs capable of conducting a word count and creating an inverted index

relationship on WARC files.

B. SIGNIFICANT RESULTS

The MapReduce job developed here to create an enhanced inverted index

relationship can be successfully utilized to process WARC files. When provided the

appropriate input path, this job can correctly process multiple WARC files and is capable

of identifying crawl response records with an HTML payload. The body of this payload

is then evaluated, with the resulting job output containing key-value pairs in the form of

<term, (URL, term relative position)>. These key-value pairs are ultimately formed into

 62

the final inverted index relationship where each term is listed with every URL and its

relative location on the associated URL.

During the course of evaluation it was determined that the MapReduce job, while

able to process numerous WARC files, is not able to process an entire crawl file set at

once. When attempting to run the job at this scale, a Java heap space error is received

during the reduce phase. Ultimately, this means that some portion of the Java applications

running the Reducers is exceeding the allotted heap space memory. This results in two

conclusions: (1) the configuration of the job, as well as the cluster instances running the

job, are not optimally configured to handle the job as is, or (2) the process of creating an

inverted index from an entire crawl file set is too large to be accomplished by one

MapReduce job.

The first conclusion is certainly true, since determining these settings was not the

goal of this research; however, through the course of evaluation, it appears that the most

likely configuration settings to evaluate for improvement are the number of reduce tasks

chosen in the MapReduce job, the number and type of instances selected for the EC2

cluster, and the Java heap space configuration of the instances in the EC2 cluster. Even if

this action alone does not create the environment capable of processing an entire crawl

file set with one job, it will ultimately improve the performance of any future MapReduce

jobs.

If the second conclusion is true, then there are two initial courses of action to

pursue. As previously discussed, index compression is an area for improvement and will

ultimately make a search capability more efficient. One approach would be to first

process URLs of the input space and implement a compression method, such as

serialization. The results from this MapReduce job can then become an input to a

subsequent MapReduce job spanning the same input space. The serialization can then be

used as a replacement of the entire URL within the inverted index, reducing the output

file size. Cascading MapReduce jobs in this fashion may allow for an indexing

MapReduce job to span an entire crawl file set. A second approach is to break up the

input file space into multiple MapReduce jobs and then work to combine their output.

This approach is a viable option to expand the input space in the event that improvements

 63

in job configuration and index compression still do not reduce the application memory to

within the system constraints.

C. RECOMMENDATIONS FOR FUTURE WORK

This thesis research represents the first step in a much larger research project.

There are numerous opportunities for future work, both in regards to the specific focus of

this thesis as well as in respect to the greater research project.

The first area of continued work is in the inverted index for the Common Crawl

dataset. Topics in this area are related to making improvements to the performance of the

MapReduce job and inverted index so that an inverted index can be generated from an

entire crawl set. Additionally, this area includes exploring techniques to improve the

robustness of the index by identifying and including other meta-data of interest. The

following three topics are specifically identified:

1. Determining how to optimize the MapReduce job with respect to maps
tasks, reduce tasks, and EMR hardware configuration, (i.e., EC2 instance
settings). This should also include any limitations on the input size to
determine whether or not an entire crawl can be processed by a single
MapReduce job or if it requires multiple jobs.

2. Determining methods to reduce the resulting inverted index file size.
Specifically, exploring index compression techniques. A starting point
would be a serialization of the URLs contained within the input files and,
subsequently, using that serialization in the inverted index relationship
rather than the complete URL.

3. Identifying and incorporating other meta-data of interest to include in the
inverted index relationship. This could include other HTML meta tags or
exploring the use of RDFa, Microdata, or other Microformats. The ability
to identify and extract these elements of a website could lead to further
enhancements to the inverted index relationship. This would,
subsequently, result in a more robust search capability.

The second area of continued work is the development of a search/query tool. The

WARC inverted index created from this thesis is in a searchable form; however, it does

not include the additional elements needed to create a search engine. Specifically, this

includes a query tool, a method to evaluate and rank the results, and a results interface.

 64

A final area of continued work is in the area of improved WARC payload

evaluation. This not only includes finding ways to improve analysis of HTML but also

finding ways to evaluate other types of response records that may not be in HTML.

Additionally, there are opportunities to improve pattern matching and filtering techniques

with respect to the payload content. This would also help to reduce the size of the output

files as nonsensical terms are removed.

 65

APPENDIX A. BASIC WORD COUNT

package edu.nps.thesisProject.projectfiles;

/**
 * File: basicWordCount.java
 * Purpose: This file demonstrates a basic implementation of a
 * MapReduce job. The function performed is that of a word count.
 * The expected input is in the form of a files containing plain text.
 *
 * Input: text file(s)
 * Output: <word1> <count>
 * <word2> <count>
 *
 * @author adcoudra1@nps.edu
 */

// Java Packages
import java.io.IOException;
import java.util.*;

// Hadoop Packages
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class basicWordCount {

 public static class basicWordCountMap extends
 Mapper<Object, Text, Text, IntWritable> {

 // create commonWords, a list of strings for common words to
 // exclude from the counting process
 // asList() creates a fixed size list initialized as specified
 List<String> commonWords = Arrays.asList("the", "a", "an", "and",
 "of", "to", "in", "am", "is", "are", "at", "not");

 @Override
 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
 /*
 * map() is the method that performs a tokenizer job, processing
 * one line at a time and splitting the line into tokens based
 * on identified characters
 */

 // create line, a String from the text of the map value

 66

 // toString() converts the text (value) back to string
 String line = value.toString();

 // create a string tokenizer for the specified String line
 // StringTokenizer(String str, String delim) allows the
 // application to break a string into tokens based on
 // specified delimiters
 StringTokenizer tokenizer = new StringTokenizer(line,
 " \t,;.?!-:@[](){}_*/");

 // iterate through all words (tokens) in the line
 // take the next token and form key value pair
 // hasMoreTokens() tests for more tokens in the tokenizer’s
 // string and returns a boolean
 while (tokenizer.hasMoreTokens()) {

 // create nextToken, a String for the next token
 // nextToken() returns the next token from the tokenizer’s
 // string
 String nextToken = tokenizer.nextToken();

 // test to see if token is contained in commonWords, if so do
 // not create key value pair
 // toLowerCase() converts all characters in string to lower
 // case
 // trim() returns a copy of the string with all leading and
 // trailing whitespace removed
 // contains() tests string for specified character sequence and
 // returns a boolean
 if (!commonWords.contains(nextToken.trim().toLowerCase())) {

 // send key value pair to output collector to pass to the
 // reducer
 // key value pair is <word, 1>
 // write() generates an output key value pair
 context.write(new Text(nextToken), new IntWritable(1));
 } // end of if (!commonWords…)
 } // end of while (tokenizer.hasMoreTokens()…)
 } // end of map ()
 } // end of basicWordCountMap

 public static class basicWordCountReduce extends
 Reducer<Text, IntWritable, Text, IntWritable> {

 @Override
 public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException {
 /*
 * reduce is the method that accepts key value pairs from the
 * mappers, sums up the values for each key and produces a final
 * output
 */

 // create sum, an integer to track the count for each key,
 // initialized to zero

 67

 int sum = 0;

 // create an IntWritable val that iterates through IntWritable
 // values
 // this loop iterates through each value passed for a given key
 for (IntWritable val : values) {

 // add each value for a given key to get the total sum
 // get() returns the integer value of the IntWritable
 sum += val.get();
 } // end for ()

 // send the final key value pair to output collector
 // key value pair is <key, sum>
 // write() generates an output key value pair
 context.write(key, new IntWritable(sum));
 } // end reduce ()
 } // end basicWordCountReduce

 public static void main(String[] args) throws Exception {
 /*
 * main is the overall driver method that triggers the mapreduce job
 * in hadoop
 */

 // create a job and assign a name (basicwordcount) for
 // identification
 // getInstance(Configuration conf, String jobName) creates a job
 // with the specified configuration and job name
 // Configuration() provides access to configuration parameters
 Job job = Job.getInstance(new Configuration(), "basicwordcount");

 // configure the key and value output class for the job
 // setOutputKeyClass() sets the key class for the job output data
 // setOutputValueClass() sets the value class for the job output
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 // configure the mapper, combiner (optional) and reducer classes
 // setMapperClass() sets the mapper for the job
 // setCombinerClass() sets the combiner class for the job
 // setReducerClass() sets the reducer class for the job
 // provide mapper, combiner, and reducer class names
 job.setMapperClass(basicWordCountMap.class);
 job.setCombinerClass(basicWordCountReduce.class);
 job.setReducerClass(basicWordCountReduce.class);

 // configure the hdfs input and output directory as fetched from
 // the command line
 // Path() names a file or directory based on the argument string
 // setInputPaths() sets the array of Path as the list of inputs for
 // the job
 // setOutputPath() sets the array of Path as the output directory
 // for the job
 //

 68

 // set the input and output path for the job
 // To take specified file paths from user, use:
 // String inputPath = args[0];
 // String outputPath = args[1];
 //
 // To take predefined file paths, use:
 // String inputPath = "data/text/*.*";
 // String outputPath = "output/";
 String inputPath = args[0];
 String outputPath = args[1];

 FileInputFormat.setInputPaths(job, new Path(inputPath));
 FileOutputFormat.setOutputPath(job, new Path(outputPath));

 // configure the jar class
 // setJarByClass() sets the jar by finding where a given class came
 // from
 job.setJarByClass(basicWordCount.class);

 // submit the job to mapreduce and wait for completion
 // System is a class that provides standard input, output and error
 // streams
 // exit() terminates the currently running java virtual machine
 // waitForCompletion() submits the job to the cluster and waits for
 // it to finish
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 } // end main ()
} // end basicWordCount

 69

APPENDIX B. BASIC INVERTED INDEX

package edu.nps.thesisProject.projectfiles;

/**
 * File: basicInvertedIndexCount.java
 * Purpose: This file demonstrates a basic implementation of a
 * MapReduce job. The function performed is that of generating an
 * inverted index, to include the additional information of relative
 * word count. The expected input is in the form of a files
 * containing plain text.
 *
 * Input: text files
 * Output: <word1>@<filename1> <count>
 * <word1>@<filename2> <count>
 * <word2>@<filename1> <count>
 *
 * @author adcoudra1@nps.edu
 */

// Java Packages
import java.io.IOException;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

// Hadoop Packages
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class basicInvertedIndexCount {

 public static class basicInvertedIndexCountMap extends
 Mapper<LongWritable, Text, Text, IntWritable> {

 // create commonWords, a list of strings for common words to
 // exclude from counting process
 // asList() creates a fixed size list initialized as specified
 private static List<String> commonWords = Arrays.asList("the", "a",
 "an", "and", "of", "to", "in", "am", "is",
 "are", "at", "not");

 // create pattern, a compiled representation of a regular
 // expression

 70

 // Pattern is the overarching class
 // compile() creates the pattern based on the provided flags
 // \w indicates a word character, short for [a-zA-Z_0-9]
 // \\w the first \ is the escape character so that Java will
 // recognize '\w' as the input
 // + indicates occurring one or more times, short for {1,}
 private static Pattern pattern = Pattern.compile("\\w+");

 // create word, the eventual map output key
 private Text word = new Text();

 // create docID, to be used to contain the current file name
 private String docID = new String();

 // create count, the output value equal to 1
 private IntWritable count = new IntWritable(1);

 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 /*
 * map is the method that performs a tokenizer job, processing one
 * line at a time and splitting the line into tokens based on
 * identified characters
 */

 // create matcher to perform regex operation on the input String
 // matcher() matches the input sequence against the provided
 // pattern
 // toString() converts the text (value) into a String
 Matcher matcher = pattern.matcher(value.toString());

 // create valueBuilder a mutable sequence of characters
 // StringBuilder() constructs a string builder with no characters
 // in it
 StringBuilder valueBuilder = new StringBuilder();

 // obtain the file name of the current file being processed
 // getInputSplit() gets the input split for this map
 // getPath() gets the file containing this split's data
 // getName() returns the final component (filename) of this file
 // path
 docID = ((FileSplit)context.getInputSplit()).getPath().getName();

 // iterate through all matches of the regex pattern found in the
 // input take the next match, convert to lower case and check
 // against common words, if not contained in common words,
 // form and emit the key value pair
 // find() attempts to find the next subsequence of the input
 // sequence that matches
 while(matcher.find()) {

 // create matchedKey from each matched pattern converted to
 // lower case
 // group() returns the input subsequence matched by the
 // previous match

 71

 // toLowerCase() converts the input to all lower case
 String matchedKey = matcher.group().toLowerCase();

 // test to see if the key is contained in commonWords, if so do
 // not create key value pair
 // trim returns a copy of the string with all leading and
 // trailing whitespace removed
 // contains() tests string for specified character sequence and
 // returns a boolean
 if (!commonWords.contains(matchedKey)) {

 // add the matched key to valueBuilder (this will be first
 // element)
 // append() appends the string representation of the argument
 valueBuilder.append(matchedKey);

 // append @ to valueBuilder
 valueBuilder.append("@");

 // append the current filename to valueBuilder
 valueBuilder.append(docID);

 // set the output key (word) to the contents of valueBuilder
 // set() assigns the input String to the contents
 this.word.set(valueBuilder.toString());

 // send key value pair to output collector to pass to the
 // reducer
 // key value pair is <word@filename, 1>
 // write() generates an output key value pair
 context.write(this.word, this.count);

 // clear the contents of valueBuilder
 // setLength() sets the length of the character sequence
 valueBuilder.setLength(0);
 } // end if (!commonWords…)
 } // end while (matcher.find())
 } // end map ()
 } // end basicInvertedIndexCountMap

 public static class basicInvertedIndexCountReduce extends
 Reducer<Text, IntWritable, Text, IntWritable> {

 // create an IntWritable to track the count sum for each key
 private IntWritable wordSum = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException {
 /*
 * reduce is the method that accepts key value pairs from the
 * mappers, sums up the values for each key and produces a final
 * output
 */

 // create an integer to track the count sum for each key,

 72

 // initialized to zero
 int sum = 0;

 // create an IntWritable val that iterates through IntWritable
 // values
 // this loop iterates through each value passed for a given key
 for (IntWritable val : values) {

 // add each value for a given key to get the total sum
 // get() returns the integer value of the IntWritable
 sum += val.get();
 } // end for ()

 // set the value of wordSum to the contents of sum
 this.wordSum.set(sum);

 // send the final key value pair to output collector
 // key value pair is <key, sum>
 // write() generates an output key value pair
 context.write(key, this.wordSum);
 } // end reduce ()
 } // end basicInvertedIndexCountReduce

 public static void main(String[] args) throws Exception {
 /*
 * main is the overall driver method that triggers the mapreduce job
 * in hadoop
 */

 // create a job and assign a name (basicinvertedindexcount) for
 // identification
 // getInstance(Configuration conf, String jobName) creates a job
 // with the specified configuration and job name
 // Configuration() provides access to configuration parameters
 Job job = Job.getInstance(new Configuration(),
 "basicinvertedindexcount");

 // configure the key and value output class for the job
 // setOutputKeyClass() sets the key class for the job output data
 // setOutputValueClass() sets the value class for the job output
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 // configure the mapper, combiner (optional) and reducer classes
 // setMapperClass() sets the mapper for the job
 // setCombinerClass() sets the combiner class for the job
 // setReducerClass() sets the reducer class for the job
 // provide mapper, combiner, and reducer class names
 job.setMapperClass(basicInvertedIndexCountMap.class);
 job.setCombinerClass(basicInvertedIndexCountReduce.class);
 job.setReducerClass(basicInvertedIndexCountReduce.class);

 // configure the hdfs input and output directory as fetched from
 // the command line
 // Path() names a file or directory based on the argument string

 73

 // setInputPaths() sets the array of Path as the list of inputs for
 // the job
 // setOutputPath() sets the array of Path as the output directory
 // for the job
 //
 // set the input and output path for the job
 // To take specified file paths from user, use:
 // String inputPath = args[0];
 // String outputPath = args[1];
 //
 // To take predefined file paths, use:
 // String inputPath = "data/text/*.*";
 // String outputPath = "output/";
 String inputPath = args[0];
 String outputPath = args[1];

 FileInputFormat.setInputPaths(job, new Path(inputPath));
 FileOutputFormat.setOutputPath(job, new Path(outputPath));

 // configure the jar class
 // setJarByClass() sets the jar by finding where a given class came
 // from
 job.setJarByClass(basicInvertedIndexCount.class);

 // submit the job to mapreduce and wait for completion
 // System is a class that provides standard input, output and error
 // streams
 // exit() terminates the currently running java virtual machine
 // waitForCompletion() submits the job to the cluster and waits for
 // it to finish
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 } // end main ()
} // end basicInvertedIndexCount

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX C. WET FILE WORD COUNT

package edu.nps.thesisProject.projectfiles;

/**
 * File: WETWordCount.java
 * Purpose: This file provides for a tool runner implementation of a
 * MapReduce job. The function performed is that of conducting a
 * word count. The expected input is in the form of WARC record
 * entries from a WET file.
 *
 * Driver for: WETWordCountMap.java
 *
 * Input: WET files
 * Output: <word> <count>
 *
 * @author adcoudra1@nps.edu
 */

// WARC Utilities
import edu.nps.thesisProject.warcutils.*;

// Hadoop Packages
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.reduce.LongSumReducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

// Log4j Package
import org.apache.log4j.Logger;

public class WETWordCount extends Configured implements Tool {

 // create a Logger object called LOG that retrieves a logger named
 // after the class
 private static final Logger LOG =
 Logger.getLogger(WETWordCount.class);

 public static void main(String[] args) throws Exception {
 /*
 * main is the overall driver method that triggers the mapreduce job
 * in hadoop
 */

 // RUN(CONFIGURATION conf, TOOL tool, STRING[] args)

 76

 // runs the given Tool by Tool.run(String[]) after parsing given
 // generic arguments
 // RUN(STRING[] args)
 // executes the command given the arguments
 //
 // overall this is equivalent to creating a new job and assigning
 // the input and output path
 //
 // returns the exit code of the Tool.run(String[]) method
 int res = ToolRunner.run(new Configuration(),
 new WETWordCount(), args);

 // terminates the currently running java virtual machine
 System.exit(res);
 } // end main ()

 @Override
 public int run(String[] args) throws Exception {
 /*
 * Builds and runs the Hadoop job.
 * return 0 if the Hadoop job completes successfully and 1 otherwise.
 */

 // set the input and output path for the job
 // To take specified file paths from user, use:
 // String inputPath = args[0];
 // String outputPath = args[1];
 //
 // To take predefined file paths, use:
 // String inputPath = "data/wet/*.warc.wet.gz";
 // String outputPath = "output/";
 //
 // Example paths for AWS:
 // String inputPath = "s3n://aws-publicdatasets/common-
 // crawl/crawl-data/CC-MAIN-2013-48/segments/
 // 1386163035819/wet/CC-MAIN-20131204131715-00000-ip-10-33-
 // 133-15.ec2.internal.warc.wet.gz";
 //
 // String inputPath = "s3n://aws-publicdatasets/common-
 // crawl/crawl-data/CC-MAIN-2013-48/segments/
 // 1386163035819/wet/*.warc.wet.gz";
 String inputPath = args[0];
 String outputPath = args[1];

 // Configuration processed by ToolRunner
 // getConf() returns the configuration used by this object
 Configuration conf = this.getConf();

 // create a job and assign a name (wetwordcount) for identification
 // getInstance(Configuration conf, String jobName) creates a job
 // with the specified configuration and job name
 Job job = Job.getInstance(conf, "wetwordcount");

 // configure the InputFormat for the job as WarcInputFormat
 // setInputFormatClass() sets the InputFormat

 77

 job.setInputFormatClass(WarcInputFormat.class);

 // configure the OutputFormat for the job as TextOutputFormat
 // setOutputFormatClass() sets the OutputFormat
 job.setOutputFormatClass(TextOutputFormat.class);

 // configure the key and value output class for the job
 // setOutputKeyClass() sets the key class for the job output data
 // setOutputValueClass() sets the value class for the job output
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(LongWritable.class);

 // configure the mapper, combiner (optional) and reducer classes
 // setMapperClass sets the mapper for the job
 // setCombinerClass sets the combiner class for the job
 // setReducerClass sets the reducer class for the job
 // provide mapper, combiner, and reducer class names
 job.setMapperClass(WETWordCountMap.WETWordCountMapper.class);
 job.setCombinerClass(LongSumReducer.class);
 job.setReducerClass(LongSumReducer.class);

 // configure the hdfs input and output directory as fetched from
 // the command line
 // Path names a file or directory based on the argument string
 // setInputPaths sets the array of Path as the list of inputs for
 // the job
 // setOutputPath sets the array of Path as the output directory for
 // the job
 FileInputFormat.addInputPath(job, new Path(inputPath));
 FileOutputFormat.setOutputPath(job, new Path(outputPath));

 // configure the jar class
 // setJarByClass() sets the jar by finding where a given class came
 // from
 job.setJarByClass(WETWordCount.class);

 // log a message object with the info level (highlight progress of
 // the application)
 LOG.info("Input path: " + inputPath);

 // submit the job to mapreduce and wait for completion, then return
 // status
 // waitForCompletion() submits the job to the cluster and waits for
 // it to finish
 return job.waitForCompletion(true) ? 0 : 1;
 } end run ()
} // end WETWordCount

 78

package edu.nps.thesisProject.projectfiles;

/**
 * File: WETWordCountMap.java
 * Purpose: This file provides a MapReduce job that performs the
 * function of a word count on WARC record entries from a WET file.
 *
 * Map for: WETWordCount.java
 *
 * Input: WET files
 * Output: <word1> <count>
 * <word2> <count>
 *
 * @author adcoudra1@nps.edu
 */

// Java Packages
import java.io.IOException;
import java.util.StringTokenizer;

// Hadoop Packages
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

// Other Apache Packages
import org.apache.commons.io.IOUtils;
import org.apache.log4j.Logger;

// JWAT Packages
import org.jwat.common.Payload;
import org.jwat.warc.WarcRecord;

public class WETWordCountMap {

 // create a Logger object called LOG that retrieves a logger named
 // after the class
 private static final Logger LOG =
 Logger.getLogger(WETWordCountMapper.class);

 // enum is a special data type that enables for a variable to be a
 // set of predefined constants
 protected static enum MAPPERCOUNTER {

 EMPTY_RECORDS,
 EXCEPTIONS,
 NON_PLAIN_TEXT,
 CURRENT_RECORD,
 NUM_TEXT_RECORDS
 } // end MAPPERCOUNTER

 protected static class WETWordCountMapper extends
 Mapper<LongWritable, WarcRecord, Text, LongWritable> {

 // create a string tokenizer for the specified string line

 79

 private StringTokenizer tokenizer;

 // create outKey, the eventual map output key
 private Text outKey = new Text();

 // create outVal, the output value equal to 1
 private LongWritable outVal = new LongWritable(1);

 @Override
 public void map(LongWritable key, WarcRecord value,
 Context context) throws IOException, InterruptedException {
 /*
 * map is the method that performs a tokenizer job, processing
 * one record at a time
 */

 // setStatus(String msg) sets the current status of the task to
 // the given string
 context.setStatus(MAPPERCOUNTER.CURRENT_RECORD + ": " +
 key.get());

 // try the following and if an error occurs, catch exception
 try {

 // only process text/plain content
 // value.header.contentTypeStr retrieves the "Content-Type:"
 // field of the record header
 if ("text/plain".equals(value.header.contentTypeStr)) {

 // getCounter(Enum<?> counterName) gets the counter for the
 // given counterName
 // increment(long incr) increments the counter by the given
 // value
 context.getCounter(MAPPERCOUNTER.NUM_TEXT_RECORDS).
 increment(1);

 // Get the record payload
 // getPayload() returns the payload object for the record
 Payload payload = value.getPayload();

 // if payload is empty perform no operation
 // else process record for word count
 if (payload == null) {
 // NOP
 } // end if (payload == null)
 else {
 // create warcContent string from record payload
 // toString() converts the text (value) into a String
 // getInputStreamComplete() gets the InputStream to read
 // the complete payload
 String warcContent =
 IOUtils.toString(payload.getInputStreamComplete());

 // if the record content is empty, increment counter
 // else process record content

 80

 if (warcContent == null && "".equals(warcContent)) {
 context.getCounter(MAPPERCOUNTER.EMPTY_RECORDS).
 increment(1);
 } // end if (warcContent is empty)
 else {
 // assign the warcConent to string tokenizer
 tokenizer = new StringTokenizer(warcContent);

 // iterate through all words (tokens) in the record, take
 // next token and form key value pair
 // hasMoreTokens() tests for more tokens in the
 // tokenizer’s string and returns a boolean
 while (tokenizer.hasMoreTokens()) {

 // set the outKey as the token
 outKey.set(tokenizer.nextToken());

 // send key value pair to output collector to pass to
 // the reducer
 // key value pair is <Text outKey, 1>
 // write() generates an output key value pair
 context.write(outKey, outVal);
 } // end while (more tokens)
 } // end else (warcContent has content)
 } // end else (payload has content)
 } // end if (record is plaintext)
 else { // if the record content is not plaintext

 // when not plaintext, increment the counter
 context.getCounter(MAPPERCOUNTER.NON_PLAIN_TEXT).
 increment(1);
 } // end else (record not plaintext)
 } // end try ()
 catch (Exception ex) {

 // if the try statement fails, catch the exception
 // error(String msg, Throwable t)
 // output the internal error statement
 LOG.error("Caught Exception", ex);

 // when exception occurs, increment the counter
 context.getCounter(MAPPERCOUNTER.EXCEPTIONS).increment(1);
 } // end catch
 } // end map ()
 } // end WETWordCountMapper
} // end WETWordCountMap

 81

APPENDIX D. WET FILE INVERTED INDEX

package edu.nps.thesisProject.projectfiles;

/**
 * File: WETIndexLocationCustom.java
 * Purpose: This file provides for a tool runner implementation of a
 * MapReduce job. The function performed is that a creating an
 * inverted index using a custom tuple data type. The expected input
 * is in the form of WARC record entries from a WET file.
 *
 * Driver for: WETIndexLocationCustomMap.java
 *
 * Input: WET files
 * Output: <word1> : <url1>@<location1>, <location2>,
 * <url2>@<location1>, <location2>,
 * <word2> : <url1>@<location1>, <location2>,
 * <url2>@<location1>, <location2>,
 *
 * @author adcoudra1@nps.edu
 */

//WARC Utilities
import edu.nps.thesisProject.warcutils.*;

// Hadoop Packages
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

//Log4j Package
import org.apache.log4j.Logger;

public class WETIndexLocationCustom extends Configured implements
 Tool {

 // create a Logger object called LOG that retrieves a logger named
 // after the class
 private static final Logger LOG =
 Logger.getLogger(WETIndexLocationCustom.class);

 public static void main(String[] args) throws Exception {
 /*
 * main is the overall driver method that triggers the mapreduce job
 * in hadoop
 */

 82

 // RUN(CONFIGURATION conf, TOOL tool, STRING[] args)
 // runs the given Tool by Tool.run(String[]) after parsing given
 // generic arguments
 // RUN(STRING[] args)
 // executes the command given the arguments
 //
 // overall this is equivalent to creating a new job and assigning
 // the input and output path
 //
 // returns the exit code of the Tool.run(String[]) method
 int res = ToolRunner.run(new Configuration(),
 new WETIndexLocationCustom(), args);

 // terminates the currently running java virtual machine
 System.exit(res);
 } // end main ()

 @Override
 public int run(String[] args) throws Exception {
 /*
 * Builds and runs the Hadoop job.
 * return 0 if the Hadoop job completes successfully and 1 otherwise.
 */

 // set the input and output path for the job
 // To take specified file paths from user, use:
 // String inputPath = args[0];
 // String outputPath = args[1];
 //
 // To take predefined file paths, use:
 // String inputPath = "data/wet/*.warc.wet.gz";
 // String outputPath = "output/";
 //
 // Example paths for AWS:
 // String inputPath = "s3n://aws-publicdatasets/common-
 // crawl/crawl-data/CC-MAIN-2013-48/segments/
 // 1386163035819/wet/CC-MAIN-20131204131715-00000-ip-10-33-133-
 // 15.ec2.internal.warc.wet.gz";
 //
 // String inputPath = "s3n://aws-publicdatasets/common-
 // crawl/crawl-data/CC-MAIN-2013-48/segments/
 // 1386163035819/wet/*.warc.wet.gz";

 // String inputPath = "s3n://aws-publicdatasets/common-
 // crawl/crawl-data/CC-MAIN-2015-48/segments/
 // 1448398444047.40/wet/CC-MAIN-20151124205404-00000-ip-10-71-
 // 132-137.ec2.internal.warc.wet.gz";
 // String outputPath = "s3://thesis-wet-custom-index/output";
 String inputPath = args[0];
 String outputPath = args[1];

 // Configuration processed by ToolRunner
 // getConf() returns the configuration used by this object
 Configuration conf = this.getConf();

 83

 // create a job and assign a name (wetindexlocationcustom) for
 // identification
 // getInstance(Configuration conf, String jobName) creates a job
 // with the specified configuration and job name
 Job job = Job.getInstance(conf, "wetindexlocationcustom");

 // configure the InputFormat for the job as WarcInputFormat
 // setInputFormatClass() sets the InputFormat
 job.setInputFormatClass(WarcInputFormat.class);

 // configure the Map OutputValue for the job as
 // termLocationCustomWritable
 // setMapOutputValueClass() sets the MapOutputValue
 job.setMapOutputValueClass(termLocationCustomWritable.class);

 // configure the OutputFormat for the job as TextOutputFormat
 // setOutputFormatClass() sets the OutputFormat
 job.setOutputFormatClass(TextOutputFormat.class);

 // configure the key and value output class for the job
 // setOutputKeyClass() sets the key class for the job output data
 // setOutputValueClass() sets the value class for the job output
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 // configure the mapper, combiner (optional) and reducer classes
 // setMapperClass sets the mapper for the job
 // setCombinerClass sets the combiner class for the job
 // setReducerClass sets the reducer class for the job
 // provide mapper, combiner, and reducer class names
 job.setMapperClass(WETIndexLocationCustomMap.
 WETIndexLocationCustomMapper.class);
 job.setReducerClass(WETIndexLocationCustomMap.
 WETIndexLocationCustomReducer.class);

 // configure the partitions of the key space
 // setPartitionerClass() sets the partitions class for the job
 // setNumReduceTasks() sets the number of reduce tasks for the job
 // in this case, the number of reduce tasks is set to match the
 // overall partitioning
 job.setPartitionerClass(WETIndexLocationCustomMap.

WETIndexLocationCustomPartitioner.class);
 job.setNumReduceTasks(37);

 // configure the hdfs input and output directory as fetched from
 // the command line
 // Path names a file or directory based on the argument string
 // setInputPaths sets the array of Path as the list of inputs for
 // the job
 // setOutputPath sets the array of Path as the output directory for
 // the job
 FileInputFormat.addInputPath(job, new Path(inputPath));
 FileOutputFormat.setOutputPath(job, new Path(outputPath));

 84

 // configure the jar class
 // setJarByClass() sets the jar by finding where a given class came
 // from
 job.setJarByClass(WETIndexLocationCustom.class);

 // log a message object with the info level (highlight progress of
 // the application)
 LOG.info("Input path: " + inputPath);

 // submit the job to mapreduce and wait for completion, then return
 // status
 // waitForCompletion() submits the job to the cluster and waits for
 // it to finish
 return job.waitForCompletion(true) ? 0 : 1;
 } // end run ()
} // end WETIndexCustomLocation

 85

package edu.nps.thesisProject.projectfiles;

/**
 * File: WETIndexLocationCustomMap.java
 * Purpose: This file provides a MapReduce job that performs the
 * function of an inverted index on WARC record entries from a WET
 * file, using a custom tuple data type.
 *
 * Map for: WETIndexLocationCustom.java
 *
 * Input: WET files
 * Output: <word1> : <url1>@<location1>, <location2>,
 * <url2>@<location1>, <location2>,
 * <word2> : <url1>@<location1>, <location2>,
 * <url2>@<location1>, <location2>,
 *
 * @author adcoudra1@nps.edu
 */

// Java Packages
import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map.Entry;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

// Hadoop Packages
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

// Other Apache Packages
import org.apache.commons.io.IOUtils;
import org.apache.log4j.Logger;

// JWAT Packages
import org.jwat.common.Payload;
import org.jwat.warc.WarcRecord;

public class WETIndexLocationCustomMap {

 // create a Logger object called LOG that retrieves a logger named
after the class
 private static final Logger LOG =
 Logger.getLogger(WETIndexLocationCustomMapper.class);

 // enum is a special data type that enables for a variable to be a
 // set of predefined constants
 protected static enum MAPPERCOUNTER {

 86

 EMPTY_RECORDS,
 EXCEPTIONS,
 NON_PLAIN_TEXT,
 CURRENT_RECORD,
 NUM_TEXT_RECORDS
 }

 protected static class WETIndexLocationCustomMapper extends
 Mapper<LongWritable, WarcRecord, Text,
 termLocationCustomWritable> {

 // NOTE: Two different regex patterns are offered – keep one
 // commented out
 // regex method (1):
 // create pattern, a compiled representation of a regular
 // expression
 // Pattern is the overarching class
 // compile() creates the pattern based on the provided flags
 // \w indicates a word character, short for [a-zA-Z_0-9]
 // \\w the first \ is the escape character so that Java will
 // recognize '\w' as the input
 // + indicates occurring one or more times, short for {1,}
// private static Pattern pattern = Pattern.compile("\\w+");

 // regex method (2):
 // (?=[a-zA-Z0-9]+[a-zA-Z]) is a positive lookahead assertion
 // ?= : positive lookahead
 // [a-zA-Z0-9]+ : match any characters in the list, an
 // unlimited number of times
 // [a-zA-Z] : that contains at least one of the
 // specified characters
 // => a single character in the specified list [] must be
 // present
 // ([a-zA-Z0-9]+) is the first capturing group
 // + : between one and unlimited times, as
 // many times as possible
 // a-z : a single character between lower case
 // a and z
 // A-Z : a single character between upper case
 // A and Z
 // 0-9 : a single character between 0 and 9
 // => this regex should match any combination of letters and
 // numbers, excluding only number combinations
 private static Pattern pattern =
 Pattern.compile("(?=[a-zA-Z0-9]+[a-zA-Z])([a-zA-Z0-9]+)");

 private termLocationCustomWritable recordLocation =
 new termLocationCustomWritable();

 // create commonWords, a list of strings for common words to
 // exclude from counting process
 // Arrays is a class containing methods for manipulating arrays
 // asList() creates a fixed size list initialized as specified
 List<String> commonWords = Arrays.asList("a", "about", "am", "an",
 "and", "are", "as", "at", "be", "by", "com", "de", "en",

 87

 "for", "from", "how", "i", "in", "is", "it", "la", "not",
 "of", "on", "or", "that", "the", "this", "to", "was",
 "what", "when", "where", "who", "will", "with", "www");

 // create recordID, to be used to contain the current record ID
 private String recordID = new String();

 // create word, the eventual map output key
 private Text word = new Text();

 @Override
 public void map(LongWritable key, WarcRecord value,

Context context) throws IOException, InterruptedException {
 /*
 * map is the method that performs a tokenizer job, processing one
 * record at a time
 */

 // setStatus(String msg) sets the current status of the task to
 // the given string
 context.setStatus(MAPPERCOUNTER.CURRENT_RECORD + ": " +
 key.get());

 // try following and if an error occurs, catch exception
 try {

 // only process text/plain content
 // value.header.contentTypeStr retrieves the "Content-Type:"
 // field of the record header
 if ("text/plain".equals(value.header.contentTypeStr)) {

 // getCounter(Enum<?> counterName) gets the Counter for the
 // given counterName
 // increment(long incr) increments the counter by the given
 // value
 context.getCounter(MAPPERCOUNTER.NUM_TEXT_RECORDS).
 increment(1);

 // Get the record payload
 // getPayload() returns the payload object for the record
 Payload payload = value.getPayload();

 // if payload is empty perform no operation
 // else process record for word count
 if (payload == null) {
 // NOP
 } // end if (payload is null)
 else {

 // create warcContent string from record payload
 // toString() converts the text (value) into a String
 // getInputStreamComplete() gets the InputStream to read
 // the complete payload
 String warcContent =
 IOUtils.toString(payload.getInputStreamComplete());

 88

 // if the record content is empty, increment counter
 // else process record content
 if (warcContent == null && "".equals(warcContent)) {

 context.getCounter(MAPPERCOUNTER.EMPTY_RECORDS).
 increment(1);
 } // end if (warcContent is empty)
 else {

 // create matcher to perform regex operation on the input
 // String
 // matcher() matches the input sequence against the
 // provided pattern
 // toString() converts the text (value) into a String
 Matcher matcher = pattern.matcher(warcContent);

 // obtain the url of the current record being processed
 // value.header.warcTargetUriStr retrieves the
 // "WARC-Target-URI:" field of the record header
 recordID = value.header.warcTargetUriStr;

 // initialize wordLocation to 0
 int wordLocation = 0;

 // iterate through all matches of the regex pattern found
 // in the input take the next match, convert to lower
 // case and check against common words, if not
 // contained in common words, form and emit the key
 // value pair find() attempts to find the next
 // subsequence of the input sequence that matches
 while(matcher.find()) {

 // increment wordLocation
 wordLocation++;

 // create matchedKey from each matched pattern
 // converted to lower case
 // group() returns the input subsequence matched by the
 // previous match
 // toLowerCase() converts the input to all lower case
 String matchedKey =
 matcher.group().trim().toLowerCase();

 // test to see if token is contained in commonWords, if
 // so do not create key value pair
 // toLowerCase() converts all characters in string to
 // lower case
 // trim() returns a copy of the string with all leading
 // and trailing whitespace removed
 // contains() tests string for specified character
 // sequence and returns a boolean
 if (!commonWords.contains(matchedKey)) {

 // set the value of word to the matched word,

 89

 // concatenated with " : "
 word.set(new Text(matchedKey+" : "));

 // set the value of the custom datatype
 recordLocation.set(recordID, wordLocation);

 // send key value pair to output collector to pass to
 // the reducer
 // key value pair is <word, (url, location)>
 // write() generates an output key value pair
 context.write(word, recordLocation);
 } // end if (not in commonWords)
 } // end while (matcher)

 // reset word counter
 wordLocation = 0;
 } // end else (warcContent has content)
 } // end else (payload not empty)
 } // end if (record is plaintext)
 else { // if the record content is not plaintext

 // when not plaintext, increment the counter
 context.getCounter(MAPPERCOUNTER.NON_PLAIN_TEXT).
 increment(1);
 } // end else record not plaintext
 } // end try ()
 catch (Exception ex) {

 // if the try statement fails, catch the exception
 // error(String msg, Throwable t)
 // output the internal error statement
 LOG.error("Caught Exception", ex);

 // when exception occurs, increment the counter
 context.getCounter(MAPPERCOUNTER.EXCEPTIONS).increment(1);
 } // end catch ()
 } // end map ()
 } // end WETIndexCustomLocationMapper

 public static class WETIndexLocationCustomReducer extends
 Reducer<Text, termLocationCustomWritable, Text, Text> {

 @Override
 public void reduce(Text key, Iterable<termLocationCustomWritable>
 values, Context context) throws
 IOException, InterruptedException {
 /*
 * reduce is the method that accepts key value pairs from the
 * mappers, sums up the values for each key and produces a final
 * output
 */

 // create map, a HashMap<K, V> of type <Text, Text>
 HashMap<Text, Text> map = new HashMap<Text, Text>();

 90

 // create tempList, a String that will be used to hold a
 // temporary hashmap value
 String tempList = "";

 // create val, of the custom type termLocationCustomWritable that
 // iterates through each termLocationCustomWritable value
 // this loop iterates through each value passed for a given key
 for (termLocationCustomWritable val : values) {

 // create recordID, and assign to it the RecordID (URL)
 // associated with val
 // getRecordID() returns the Text recordID contained within the
 // custom data type
 Text recordID = new Text(val.getRecordID());

 // create recordLoc, and assign to it the Location (word
 // position) associated with val
 // getLocation() returns the IntWritable location contained
 // within the custom data type
 // toString() converts the IntWritable to a String
 Text recordLoc = new Text(val.getLocation().toString());

 // check the map to see if it contains any values associated
 // with the specified key
 // this checks to see to see whether or not a key value has
 // been placed in the hashmap
 // if so, then the value is retrieved and appended with the
 // current location
 // if not, then it is added as a new entry into the hashmap
 // get(), returns the <value> associated with the specified
 // <key = recordID>
 if (map.get(recordID) != null) { // a <key, value> exists in
 // the hashmap

 // create a new Text variable comprised of the retrieved
 // <value> from the hashmap appended with the current
 // values of the loop iteration
 tempList = new Text(map.get(recordID).toString()+
 recordLoc.toString() + ", ").toString();

 // place the updated <value> in the hashmap assigned to the
 // associated <key>
 // put(), places the specified <value> with the <key> in the
 // hashmap, if the map already has a value associated with
 // the key, it is replaced
 map.put(recordID, new Text(tempList));
 } // end if (<key, value> exists in hashmap)
 else { // the <key, value> does not exist in the hashmap

 // place a new entry in the hashmap
 map.put(recordID, new Text(recordLoc+", "));
 } // end else (<key, value> does not exist in hashmap)
 } // end for ()

 // create it, an Iterator that will be used to traverse and

 91

 // manipulate the HashMap
 // entrySet(), returns a Set view of the mappings contained in
 // the HashMap
 // iterator(), returns an iterator over the set of elements
 Iterator<Entry<Text, Text>> it = map.entrySet().iterator();

 // create strBuilder, a StringBuilder is a mutable sequence of
 // characters
 StringBuilder strBuilder = new StringBuilder();

 // iterate through all elements contained within the Iterator
 // hasNext(), returns TRUE is the iteration has more elements
 while (it.hasNext()) {
 // create pair, containing the map entry retrieved from the
 // iterator
 // next(), returns the next element in the iteration
 Entry<Text, Text> pair = it.next();

 // append the StringBuilder with the <key, value> contained
 // within pair
 // getKey(), returns the corresponding key of the entry
 // getValue(), returns the corresponding value of the entry
 strBuilder.append(pair.getKey() + ":" + pair.getValue() + " ");

 // remove already retrieved entry from the iterator
 // remove(), removes the last element returned by the iterator
 it.remove(); // avoids a ConcurrentModificationException }
 } // end while ()

 // send the final key value pair to output collector
 // key value pair is <key, strBuilder>
 // write() generates an output key value pair
 context.write(key, new Text(strBuilder.toString()));
 } // end reduce ()
 } // end WETIndexLocationCustomReducer

 public static class WETIndexLocationCustomPartitioner extends
 Partitioner<Text, termLocationCustomWritable> {

 @Override
 public int getPartition(Text key, termLocationCustomWritable value,
 int numPartitions) {
 /*
 * getPartition is the method that returns the partition number for
 * a given key
 */

 // create partitionKey, a String assigned to the value of the
 // provided key
 String partitionKey = key.toString().toLowerCase();

 // this series of if-else statements checks the first character
 // of the provided key and assigns the partitioner based on
 // this value the purpose is to force the reducer output files
 // to be organized by first character (e.g., all terms

 92

 // beginning with 'a' are contained within the same output
 // file)
 if (partitionKey.charAt(0) == '0')
 return 0;
 else if (partitionKey.charAt(0) == '1')
 return 1;
 else if (partitionKey.charAt(0) == '2')
 return 2;
 else if (partitionKey.charAt(0) == '3')
 return 3;
 else if (partitionKey.charAt(0) == '4')
 return 4;
 else if (partitionKey.charAt(0) == '5')
 return 5;
 else if (partitionKey.charAt(0) == '6')
 return 6;
 else if (partitionKey.charAt(0) == '7')
 return 7;
 else if (partitionKey.charAt(0) == '8')
 return 8;
 else if (partitionKey.charAt(0) == '9')
 return 9;
 else if (partitionKey.charAt(0) == 'a')
 return 10;
 else if (partitionKey.charAt(0) == 'b')
 return 11;
 else if (partitionKey.charAt(0) == 'c')
 return 12;
 else if (partitionKey.charAt(0) == 'd')
 return 13;
 else if (partitionKey.charAt(0) == 'e')
 return 14;
 else if (partitionKey.charAt(0) == 'f')
 return 15;
 else if (partitionKey.charAt(0) == 'g')
 return 16;
 else if (partitionKey.charAt(0) == 'h')
 return 17;
 else if (partitionKey.charAt(0) == 'i')
 return 18;
 else if (partitionKey.charAt(0) == 'j')
 return 19;
 else if (partitionKey.charAt(0) == 'k')
 return 20;
 else if (partitionKey.charAt(0) == 'l')
 return 21;
 else if (partitionKey.charAt(0) == 'm')
 return 22;
 else if (partitionKey.charAt(0) == 'n')
 return 23;
 else if (partitionKey.charAt(0) == 'o')
 return 24;
 else if (partitionKey.charAt(0) == 'p')
 return 25;
 else if (partitionKey.charAt(0) == 'q')

 93

 return 26;
 else if (partitionKey.charAt(0) == 'r')
 return 27;
 else if (partitionKey.charAt(0) == 's')
 return 28;
 else if (partitionKey.charAt(0) == 't')
 return 29;
 else if (partitionKey.charAt(0) == 'u')
 return 30;
 else if (partitionKey.charAt(0) == 'v')
 return 31;
 else if (partitionKey.charAt(0) == 'w')
 return 32;
 else if (partitionKey.charAt(0) == 'x')
 return 33;
 else if (partitionKey.charAt(0) == 'y')
 return 34;
 else if (partitionKey.charAt(0) == 'z')
 return 35;
 else // this partition is the catch all for any unspecified
 // character
 return 36;
 } // end getPartition ()
 } // end WETIndexLocationCustomPartitioner
} // end WETIndexLocationCustomMap

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

APPENDIX E. CUSTOM TUPLE-DATA TYPE

package edu.nps.thesisProject.projectfiles;

/**
 * File: termLocationCustomWritable.java
 * Purpose: Implementation of a custom writable data type.
 *
 * termLocationCustomWritable:
 * Text recordID - contains the URL of the associated term
 * IntWritable location - contains the location of a term
 * contained within the record
 *
 * @author adcoudra1@nps.edu
 */

// Java Packages
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

// Hadoop Packages
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;

public class termLocationCustomWritable implements Writable {

 // create the two elements of this custom writable datatype
 // recordID, a Text element containing a filename
 // location, an IntWritable containing the location of a term in the
 // associated record
 private Text recordID;
 private IntWritable location;

 public termLocationCustomWritable() {
 /*
 * termLocationCustomWritable() is the default constructor for this
 * custom data type
 */

 // create recordID, a new Text element
 this.recordID = new Text();

 // create location, a new IntWritable element
 this.location = new IntWritable();
 } // end termLocationCustomWritable constructor

 public void set(String recID, int loc) {
 /*
 * setter for the custom data type
 */

 96

 // set recordID to input value of recID
 this.recordID.set(recID);

 // set location to input value of loc
 this.location.set(loc);
 } // end of set ()

 @Override
 public void readFields(DataInput dataInput) throws IOException {
 /*
 * readFields() deserializes the fields of the object from dataInput
 */

 recordID.readFields(dataInput);
 location.readFields(dataInput);
 } // end of readFields ()

 @Override
 public void write(DataOutput dataOutput) throws IOException {
 /*
 * write() serializes the fields of the object to dataOutput
 */

 recordID.write(dataOutput);
 location.write(dataOutput);
 } // end of write ()

 public Text getRecordID() {
 /*
 * getRecordID() returns the recordID of the custom data type
 * variable
 */

 return recordID;
 } // end of getRecordID ()

 public IntWritable getLocation() {
 /*
 * getLocation() returns the location of the custom data type
 * variable
 */

 return location;
 } // end of getLocation ()
} // end of termLocationCustomWritable class

 97

APPENDIX F. WARC FILE WORD COUNT

package edu.nps.thesisProject.projectfiles;

/**
 * File: WARCWordCount.java
 * Purpose: This file provides for a tool runner implementation of a
 * MapReduce job. The function performed is that of conducting a
 * word count. The expected input is in the form of WARC record
 * entries from a WARC file.
 *
 * Driver for: WARCWordCountMap.java
 *
 * Input: WARC files
 * Output: <word> <count>
 *
 * @author adcoudra1@nps.edu
 */

// WARC Utilities
import edu.nps.thesisProject.warcutils.*;

// Hadoop Packages
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.reduce.LongSumReducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

// Log4j Package
import org.apache.log4j.Logger;

public class WARCWordCount extends Configured implements Tool {

 // create a Logger object called LOG that retrieves a logger named
 // after the class
 private static final Logger LOG =
 Logger.getLogger(WARCWordCount.class);

 public static void main(String[] args) throws Exception {
 /*
 * main is the overall driver method that triggers the mapreduce job
 * in hadoop
 */

 // RUN(CONFIGURATION conf, TOOL tool, STRING[] args)

 98

 // runs the given Tool by Tool.run(String[]) after parsing given
 // generic arguments
 // RUN(STRING[] args)
 // executes the command given the arguments
 //
 // overall this is equivalent to creating a new job and assigning
 // the input and output path
 //
 // returns the exit code of the Tool.run(String[]) method
 int res = ToolRunner.run(new Configuration(),
 new WARCWordCount(), args);

 // terminates the currently running java virtual machine
 System.exit(res);
 } // end of main ()

 @Override
 public int run(String[] args) throws Exception {
 /*
 * Builds and runs the Hadoop job.
 * return 0 if the Hadoop job completes successfully and 1 otherwise.
 */

 // set the input and output path for the job
 // To take specified file paths from user, use:
 // String inputPath = args[0];
 // String outputPath = args[1];
 //
 // To take predefined file paths, use:
 // String inputPath = "data/warc/*.warc.gz";
 // String outputPath = "output/";
 //
 // Example paths for AWS:
 // String inputPath = "s3n://aws-publicdatasets/common-
 // crawl/crawl-data/CC-MAIN-2013-48/segments/1386163035819/wet/
 // CC-MAIN-20131204131715-00000-ip-10-33-133-
 // 15.ec2.internal.warc.gz";
 //
 // String inputPath = "s3n://aws-publicdatasets/common-
 // crawl/crawl-data/CC-MAIN-2013-48/segments/
 // 1386163035819/wet/*.warc.gz";
 String inputPath = args[0];
 String outputPath = args[1];

 // Configuration processed by ToolRunner
 // getConf() returns the configuration used by this object
 Configuration conf = this.getConf();

 // create a job and assign a name (warcwordcount) for
 // identification
 // getInstance(Configuration conf, String jobName) creates a job
 // with the specified configuration and job name
 Job job = Job.getInstance(conf, "warcwordcount");

 // configure the InputFormat for the job as WarcInputFormat

 99

 // setInputFormatClass() sets the InputFormat
 job.setInputFormatClass(WarcInputFormat.class);

 // configure the OutputFormat for the job as TextOutputFormat
 // setOutputFormatClass() sets the OutputFormat
 job.setOutputFormatClass(TextOutputFormat.class);

 // configure the key and value output class for the job
 // setOutputKeyClass() sets the key class for the job output data
 // setOutputValueClass() sets the value class for the job output
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(LongWritable.class);

 // configure the mapper, combiner (optional) and reducer classes
 // setMapperClass sets the mapper for the job
 // setCombinerClass sets the combiner class for the job
 // setReducerClass sets the reducer class for the job
 // provide mapper, combiner, and reducer class names
 job.setMapperClass(WARCWordCountMap.WARCWordCountMapper.class);
 job.setCombinerClass(LongSumReducer.class);
 job.setReducerClass(LongSumReducer.class);

 // configure the hdfs input and output directory as fetched from
 // the command line
 // Path names a file or directory based on the argument string
 // setInputPaths sets the array of Path as the list of inputs for
 // the job
 // setOutputPath sets the array of Path as the output directory for
 // the job
 FileInputFormat.addInputPath(job, new Path(inputPath));
 FileOutputFormat.setOutputPath(job, new Path(outputPath));

 // configure the jar class
 // setJarByClass() sets the jar by finding where a given class came
 // from
 job.setJarByClass(WARCWordCount.class);

 // log a message object with the info level (highlight progress of
 // the application)
 LOG.info("Input path: " + inputPath);

 // submit the job to mapreduce and wait for completion, then return
 // status
 // waitForCompletion() submits the job to the cluster and waits for
 // it to finish
 return job.waitForCompletion(true) ? 0 : 1;
 } // end of run ()
} // end of WARCWordCount

 100

package edu.nps.thesisProject.projectfiles;

/**
 * File: WARCWordCountMap.java
 * Purpose: This file provides a MapReduce job that performs the
 * function of a word count on WARC record entries from a WARC file.
 * This job only conducts a word count on 'response' type record
 * entries with an html payload.
 *
 * Map for: WARCWordCount.java
 *
 * Input: WARC files
 * Output: <word1> <count>
 * <word2> <count>
 *
 * @author adcoudra1@nps.edu
 */

// Java Packages
import java.io.IOException;
import java.util.StringTokenizer;

// Hadoop Packages
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

// Other Apache Packages
import org.apache.commons.io.IOUtils;
import org.apache.log4j.Logger;

// JWAT Packages
import org.jwat.common.Payload;
import org.jwat.warc.WarcRecord;

// Jsoup Packages
import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;

public class WARCWordCountMap {

 // create a Logger object called LOG that retrieves a logger named
 // after the class
 private static final Logger LOG =
 Logger.getLogger(WARCWordCountMapper.class);

 // enum is a special data type that enables for a variable to be a
 // set of predefined constants
 protected static enum MAPPERCOUNTER {

 EMPTY_RESPONSE,
 EXCEPTIONS,
 CURRENT_RECORD,
 RESPONSE_RECORDS,
 HTML_RECORDS

 101

 } // end MAPPERCOUNTER

 protected static class WARCWordCountMapper extends
 Mapper<LongWritable, WarcRecord, Text, LongWritable> {

 // create a string tokenizer for the specified string line
 private StringTokenizer tokenizer;

 // create outKey, the eventual map output key
 private Text outKey = new Text();

 // create outVal, the output value equal to 1
 private LongWritable outVal = new LongWritable(1);

 @Override
 public void map(LongWritable key, WarcRecord value,
 Context context) throws IOException, InterruptedException {
 /*
 * map is the method that performs a tokenizer job, processing one
 * record at a time
 */

 // setStatus(String msg) sets the current status of the task to
 // the given string
 context.setStatus(MAPPERCOUNTER.CURRENT_RECORD + ": " +
 key.get());

 // try following and if an error occurs, catch exception
 try {

 // only process records that are a 'response' type
 // value.header.warcTypeStr retrieves the "Type:" field of the
 // record header
 if ("response".equals(value.header.warcTypeStr)) {

 // getCounter(Enum<?> counterName) gets the Counter
 // for the given counterName
 // increment(long incr) increments the counter by the
 // given value
 context.getCounter(MAPPERCOUNTER.RESPONSE_RECORDS).
 increment(1);

 // Get the record payload
 // getPayload() returns the payload object for the record
 Payload payload = value.getPayload();

 // if payload is empty perform no operation
 // else process record for word count
 if (payload == null) {
 // NOP
 } // end if (payload is null)
 else {
 // create warcContent string from record payload
 // toString() converts the text (value) into a String
 // getInputStreamComplete() gets the InputStream to read

 102

 // the complete payload
 String warcContent =
 IOUtils.toString(payload.getInputStreamComplete());

 // if the record content is empty, increment counter
 // else process record content
 if (warcContent == null && "".equals(warcContent)) {

 context.getCounter(MAPPERCOUNTER.EMPTY_RESPONSE).
 increment(1);
 } // end if (warcContent is empty)
 else {

 // create doc a Jsoup HTML Document
 // parse() parses HTML into a Document
 Document doc = Jsoup.parse(warcContent);

 // create html, a CharSequence assigned to the value of
 // "html"
 CharSequence html = "html";

 // create metaInfo, a String used to retrieve the content
 // type of the payload
 // select(String cssQuery) finds elements matching the
 // provided selector
 // first() returns the first matched element
 // attr(String) gets an attributes value by its key
 String metaInfo = doc.select(
 "meta[http-equiv=Content-Type]").
 first().attr("content");

 // if the payload is coded in html, continue evaluating
 // else process the next record
 if (metaInfo.contains(html)) {

 context.getCounter(MAPPERCOUNTER.HTML_RESPONSE).
 increment(1);

 // create text, a String that contains the text of the
 // HTML Document body
 // body() accesses the Documents body element
 // text() gets the body element as text
 String text = doc.body().text();

 // assign the warcConent to string tokenizer
 tokenizer = new StringTokenizer(text);

 // iterate through all words (tokens) in the record
 // body take next token and form key value pair
 // hasMoreTokens() tests for more tokens in the
 // tokenizer’s string and returns a boolean
 while (tokenizer.hasMoreTokens()) {

 // set the outKey as the token
 outKey.set(tokenizer.nextToken());

 103

 // send key value pair to output collector to pass to
 // the reducer
 // key value pair is <Text outKey, 1>
 // write() generates an output key value pair
 context.write(outKey, outVal);
 } // end while (more tokens)
 } // end if (html content)
 else { // if response content is not html
 // NOP
 } // end else (not html)
 } // end else (warcContent has contents)
 } // end else (payload has contents)
 } // end if (record is response)
 else { // if record is not a response
 // NOP
 } // end else (record not a response)
 } // end try ()
 catch (Exception ex) { // if the try statement fails,
 // catch the exception

 // error(String msg, Throwable t)
 // output the internal error statement
 LOG.error("Caught Exception", ex);

 // when exception occurs, increment the counter
 context.getCounter(MAPPERCOUNTER.EXCEPTIONS).increment(1);
 } // end catch ()
 } // end map ()
 } // end WARCWordCountMapper
} // end WARCWordCountMap

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX G. WARC FILE INVERTED INDEX

package edu.nps.thesisProject.projectfiles;

/**
 * File: WARCIndexLocationCustom.java
 * Purpose: This file provides for a tool runner implementation of a
 * MapReduce job. The function performed is that a creating an
 * inverted index using a custom tuple data type. The expected input
 * is in the form of WARC record entries from a WARC file.
 *
 * Driver for: WARCIndexLocationCustomMap.java
 *
 * Input: WARC files
 * Output: <word1> | <url1>|<location1>, <location2>,|
 <url2>|<location1>, <location2>,|
 <word2> | <url1>|<location1>, <location2>,|
 <url2>|<location1>, <location2>,|
 *
 * @author adcoudra1@nps.edu
 */

//WARC Utilities
import edu.nps.thesisProject.warcutils.*;

// Hadoop Packages
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

//Log4j Package
import org.apache.log4j.Logger;

public class WARCIndexLocationCustom extends Configured implements
 Tool {

 // create a Logger object called LOG that retrieves a logger named
 // after the class
 private static final Logger LOG =
 Logger.getLogger(WARCIndexLocationCustom.class);

 public static void main(String[] args) throws Exception {
 /*
 * main is the overall driver method that triggers the mapreduce job
 * in hadoop
 */

 106

 // RUN(CONFIGURATION conf, TOOL tool, STRING[] args)
 // runs the given Tool by Tool.run(String[]) after parsing given
 // generic arguments
 // RUN(STRING[] args)
 // executes the command given the arguments
 //
 // overall this is equivalent to creating a new job and assigning
 // the input and output path
 //
 // returns the exit code of the Tool.run(String[]) method
 int res = ToolRunner.run(new Configuration(),
 new WARCIndexLocationCustom(), args);

 // terminates the currently running java virtual machine
 System.exit(res);
 } // end main ()

 @Override
 public int run(String[] args) throws Exception {
 /*
 * Builds and runs the Hadoop job.
 * return 0 if the Hadoop job completes successfully and 1 otherwise.
 */

 // set the input and output path for the job
 // To take specified file paths from user, use:
 // String inputPath = args[0];
 // String outputPath = args[1];
 //
 // To take predefined file paths, use:
 // When all files are contained within a single directory:
 // String inputPath = "data/warc/*.warc.wet.gz";
 //
 // When input files are contained with multiple directions use
 // globbing:
 // Example:
 // data---warc---test1---file1.warc.gz
 // | |
 // | |-test2---file2.warc.gz
 // |
 // |-wet----test1---file1.warc.wet.gz
 // |
 // |-test2---file2.warc.wet.gz
 //
 // To search entire structure and identify all warc.gz files:
 // String intputPath = "data/*/*/*.warc.gz";
 //
 // String outputPath = "output/";
 //
 // Example paths for AWS:
 // String inputPath = "s3n://aws-publicdatasets/common-
 // crawl/crawl-data/CC-MAIN-2013-
 // 48/segments/1386163035819/wet/CC-MAIN-20131204131715-
 // 00000-ip-10-33-133-15.ec2.internal.warc.gz";

 107

 //
 // String inputPath = "s3n://aws-publicdatasets/common-
 // crawl/crawl-data/CC-MAIN-2013-
 // 48/segments/1386163035819/wet/*.warc.gz";
 String inputPath = args[0];
 String outputPath = args[1];

 // Configuration processed by ToolRunner
 // getConf() returns the configuration used by this object
 Configuration conf = this.getConf();

 // Compress the final reducer output
 // set(String name, String value) sets the value of the named
 // property
 // mapreduce.output.fileoutputformat.compress
 // default: false
 // purpose: specify whether or no job output should be
 // compressed
 // mapreduce.output.fileoutputformat.compress.codec
 // default: org.apache.hadoop.io.compress.DefaultCodec
 // purpose: specify compression codec
 conf.set("mapreduce.output.fileoutputformat.compress", "true");
 conf.set("mapreduce.output.fileoutputformat.compress.codec",
 "org.apache.hadoop.io.compress.GzipCodec");

 // create a job and assign a name (warcindexlocationcustom) for
 // identification
 // getInstance(Configuration conf, String jobName) creates a job
 // with the specified configuration and job name
 Job job = Job.getInstance(conf, "warcindexlocationcustom");

 // configure the InputFormat for the job as WarcInputFormat
 // setInputFormatClass() sets the InputFormat
 job.setInputFormatClass(WarcInputFormat.class);

 // configure the Map OutputValue for the job as
 // termLocationCustomWritable
 // setMapOutputValueClass() set the MapOutputValue
 job.setMapOutputValueClass(termLocationCustomWritable.class);

 // configure the OutputFormat for the job as TextOutputFormat
 // setOutputFormatClass() sets the OutputFormat
 job.setOutputFormatClass(TextOutputFormat.class);

 // configure the key and value output class for the job
 // setOutputKeyClass() sets the key class for the job output data
 // setOutputValueClass() sets the value class for the job output
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);

 // configure the mapper, combiner (optional) and reducer classes
 // setMapperClass sets the mapper for the job
 // setCombinerClass sets the combiner class for the job
 // setReducerClass sets the reducer class for the job
 // provide mapper, combiner, and reducer class names

 108

 job.setMapperClass(WARCIndexLocationCustomMap.
 WARCIndexLocationCustomMapper.class);
 job.setReducerClass(WARCIndexLocationCustomMap.
 WARCIndexLocationCustomReducer.class);

 // configure the partitions of the key space
 // setPartitionerClass() sets the partitions class for the job
 // setNumReduceTasks() sets the number of reduce tasks for the job
 // NOTE: if partitioner is used, then number of reduce tasks must
 // match the number of partitions used
 job.setPartitionerClass(WARCIndexLocationCustomMap.
 WARCIndexLocationCustomPartitioner.class);
 job.setNumReduceTasks(37);

 // configure the hdfs input and output directory as fetched from
 // the command line
 // Path names a file or directory based on the argument string
 // setInputPaths sets the array of Path as the list of inputs for
 // the job
 // setOutputPath sets the array of Path as the output directory for
 // the job
 FileInputFormat.addInputPath(job, new Path(inputPath));
 FileOutputFormat.setOutputPath(job, new Path(outputPath));

 // configure the jar class
 // setJarByClass() sets the jar by finding where a given class came
 // from
 job.setJarByClass(WARCIndexLocationCustom.class);

 // log a message object with the info level (highlight progress of
 // the application)
 LOG.info("Input path: " + inputPath);

 // submit the job to mapreduce and wait for completion, then return
 // status
 // waitForCompletion() submits the job to the cluster and waits for
 // it to finish
 return job.waitForCompletion(true) ? 0 : 1;
 } // end run ()
} // WARCIndexCustomLocation

 109

package edu.nps.thesisProject.projectfiles;

/**
 * File: WARCIndexLocationCustomMap.java
 * Purpose: This file provides a MapReduce job that performs the
 * function of an inverted index on WARC record entries from a WARC
 * file, using a custom tuple data type.
 *
 * Map for: WARCIndexLocationCustom.java
 *
 * Input: WARC files
 * Output: <word1> | <url1>|<location1>, <location2>,|
 * <url2>|<location1>, <location2>,|
 * <word2> | <url1>|<location1>, <location2>,|
 * <url2>|<location1>, <location2>,|
 *
 * @author adcoudra1@nps.edu
 */

// Java Packages
import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map.Entry;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

// Hadoop Packages
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

// Other Apache Packages
import org.apache.commons.io.IOUtils;
import org.apache.log4j.Logger;

// JWAT Packages
import org.jwat.common.Payload;
import org.jwat.warc.WarcRecord;

//Jsoup Packages
import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.select.Elements;

public class WARCIndexLocationCustomMap {

 // create a Logger object called LOG that retrieves a logger named
 // after the class
 private static final Logger LOG =
 Logger.getLogger(WARCIndexLocationCustomMapper.class);

 110

 // enum is a special data type that enables for a variable to be a
 // set of predefined constants
 protected static enum MAPPERCOUNTER {

 EMPTY_RESPONSE,
 EXCEPTIONS,
 CURRENT_RECORD,
 RESPONSE_RECORDS,
 HTML_RECORDS
 } // end MAPPERCOUNTER

 protected static class WARCIndexLocationCustomMapper extends
 Mapper<LongWritable, WarcRecord, Text,
 termLocationCustomWritable> {

 // NOTE: Two different regex patterns are offered – keep one
 // commented out
 // regex method (1):
 // create pattern, a compiled representation of a regular
 // expression
 // Pattern is the overarching class
 // compile() creates the pattern based on the provided flags
 // \w indicates a word character, short for [a-zA-Z_0-9]
 // \\w the first \ is the escape character so that Java will
 // recognize '\w' as the input
 // + indicates occurring one or more times, short for {1,}
// private static Pattern pattern = Pattern.compile("\\w+");

 // regex method (2):
 // (?=[a-zA-Z0-9]+[a-zA-Z]) is a positive lookahead assertion
 // ?= : positive lookahead
 // [a-zA-Z0-9]+ : match any characters in the list, an
 // unlimited number of times
 // [a-zA-Z] : that contains at least one of the
 // specified characters
 // => a single character in the specified list [] must be
 // present
 // ([a-zA-Z0-9]+) is the first capturing group
 // + : between one and unlimited times, as many
 // times as possible
 // a-z : a single character between lower case
 // a and z
 // A-Z : a single character between upper case
 // A and Z
 // 0-9 : a single character between 0 and 9
 // => this regex will match any combination of letters and
 // numbers, excluding only number combinations
 private static Pattern pattern =
 Pattern.compile("(?=[a-zA-Z0-9]+[a-zA-Z])([a-zA-Z0-9]+)");

 private termLocationCustomWritable recordLocation =
 new termLocationCustomWritable();

 // create commonWords, a list of strings for common words to

 111

 // exclude from counting process
 // Arrays is a class containing methods for manipulating arrays
 // asList() creates a fixed size list initialized as specified
 List<String> commonWords = Arrays.asList("a", "about", "am", "an",
 "and", "are", "as", "at", "be", "by", "com", "de",
 "en", "for", "from", "how", "i", "in", "is", "it",
 "la", "not", "of", "on", "or", "that", "the", "this",
 "to", "was", "what", "when", "where", "who", "will",
 "with", "www");

 // create recordID, to be used to contain the current record ID
 private String recordID = new String();

 // create word, the eventual map output key
 private Text word = new Text();

 @Override
 public void map(LongWritable key, WarcRecord value,
 Context context) throws IOException, InterruptedException {
 /*
 * map is the method that performs a tokenizer job, processing one
 * record at a time
 */

 // setStatus(String msg) sets the current status of the task to
 // the given string
 context.setStatus(MAPPERCOUNTER.CURRENT_RECORD + ": " +
 key.get());

 // try following and if an error occurs, catch exception
 try {

 // only process records that are a 'response' type
 // value.header.warcTypeStr retrieves the "Type:" field of the
 // record header
 if ("response".equals(value.header.warcTypeStr)) {

 // getCounter(Enum<?> counterName) gets the Counter
 // for the given counterName
 // increment(long incr) increments the counter by the
 // given value
 context.getCounter(MAPPERCOUNTER.RESPONSE_RECORDS).
 increment(1);

 // Get the record payload
 // getPayload() returns the payload object for the record
 Payload payload = value.getPayload();

 // if payload is empty perform no operation
 // else process record for word count
 if (payload == null) {
 // NOP
 } // end if (payload is null)
 else { // payload exists
 // create warcContent string from record payload

 112

 // toString() converts the text (value) into a String
 // getInputStreamComplete() gets the InputStream to read
 // the complete payload
 String warcContent =
 IOUtils.toString(payload.getInputStreamComplete());

 // if the record content is empty, increment counter
 // else process record content
 if (warcContent == null && "".equals(warcContent)) {

 context.getCounter(MAPPERCOUNTER.EMPTY_RESPONSE).
 increment(1);
 } // end if (payload is empty)
 else { // payload is not empty
 // create doc a Jsoup HTML Document
 // parse() parses HTML into a Document
 Document doc = Jsoup.parse(warcContent);

 // method (1): search for content-type
 // -> uncomment method (1) section
 // -> comment out method (2) section

 /* // <- start of method (1)
 // create html, a CharSequence assigned to the value of
 // "html"
 CharSequence html = "html";

 // create metaInfo, a String used to retrieve the content
 // type of the payload
 // select(String cssQuery) finds elements matching the
 // provided selector
 // first() returns the first matched element
 // attr(String) gets an attributes value by its key
 String metaInfo = doc.select(
 "meta[http-equiv=Content-Type]").
 first().attr("content");
 */ // <- end of method (1)

 ///* // <- start of method (2)
 // create HTML, an object of the type Elements which
 // contain the retrieved result from the jsoup
 // Document
 // select("html") finds the contents of the <html> tag in
 // the document this returns null if none present
 Elements span = doc.select("html");
 //*/ // <- end of method (2)

 // if the payload is coded in html, continue evaluating
 // else process the next record
 // if (metaInfo.contains(html)) { // <- if for method (1)
 if (span != null) { // <- if statement for method (2)

 context.getCounter(MAPPERCOUNTER.HTML_RECORDS).
 increment(1);

 113

 // create text, a String that contains the text of the
 // HTML Document body
 // body() accesses the Documents body element
 // text() gets the body element as text
 String text = doc.body().text();

 // create matcher to perform regex operation on the
 // input String
 // matcher() matches the input sequence against the
 // provided pattern
 // toString() converts the text (value) into a String
 Matcher matcher = pattern.matcher(text);

 // obtain the url of the current record being processed
 // value.header.warcTargetUriStr retrieves the
 // "WARC-Target-URI:" field of the record header
 recordID = value.header.warcTargetUriStr;

 // initialize wordLocation to 0
 int wordLocation = 0;

 // iterate through all matches of the regex pattern
 // found in the input take the next match, convert
 // to lower case and check against common words, if
 // not contained in common words, form and emit the
 // key value pair
 // find() attempts to find the next subsequence of the
 // input sequence that matches
 while(matcher.find()) {

 // increment wordLocation
 wordLocation++;

 // create matchedKey from each matched pattern
 // converted to lower case
 // group() returns the input subsequence matched by
 // the previous match
 // toLowerCase() converts the input to all lower case
 String matchedKey =
 matcher.group().trim().toLowerCase();

 // test to see if token is contained in commonWords,
 // if so do not create key value pair
 // toLowerCase() converts all characters in string to
 // lower case
 // trim() returns a copy of the string with all
 // leading and trailing whitespace removed
 // contains() tests string for specified character
 // sequence and returns a boolean
 if (!commonWords.contains(matchedKey)) {

 // set the value of word to the matched word,
 // concatenated with "|"
 word.set(new Text(matchedKey+"|"));

 114

 // set the value of the custom datatype
 recordLocation.set(recordID, wordLocation);

 // send key value pair to output collector to pass
 // to the reducer
 // key value pair is <word, (url, location)>
 // write() generates an output key value pair
 context.write(word, recordLocation);
 } // end if (pattern not found in common words
 } // end while (pattern exists in body)
 // reset word counter
 wordLocation = 0;
 } // end if response content is html
 else { // if response content is not html
 // NOP
 } // end else (response not html)
 } // end else (payload not empty)
 } // end else (payload exists)
 } // end else (payload != null)
 else { // if record is not a response
 // NOP
 } // end else (not a response)
 } // end try ()
 catch (Exception ex) { // if try statement fails, catch exception
 // error(String msg, Throwable t)
 // output the internal error statement
 LOG.error("Caught Exception", ex);

 // when exception occurs, increment the counter
 context.getCounter(MAPPERCOUNTER.EXCEPTIONS).increment(1);
 } // end catch (exception)
 } // end map ()
 } // end WARCIndexLocationCustomMapper

 public static class WARCIndexLocationCustomReducer extends
 Reducer<Text, termLocationCustomWritable, Text, Text> {

 @Override
 public void reduce(Text key, Iterable<termLocationCustomWritable>
 values, Context context) throws
 IOException, InterruptedException {
 /*
 * reduce is the method that accepts key value pairs from the
 * mappers, sums up the values for each key and produces a final
 * output
 */

 // create map, a HashMap<K, V> of type <Text, Text>
 HashMap<Text, Text> map = new HashMap<Text, Text>();

 // create tempList, a String that will be used to hold a
 // temporary hashmap value
 String tempList = "";

 // create val, of the custom type termLocationCustomWritable that

 115

 // iterates through each termLocationCustomWritable value
 // this loop iterates through each value passed for a given key
 for (termLocationCustomWritable val : values) {

 // create recordID, and assign to it the RecordID (URL)
 // associated with val
 // getRecordID() returns the Text recordID contained within the
 // custom data type
 Text recordID = new Text(val.getRecordID());

 // create recordLoc, and assign to it the Location (word
 // position) associated with val
 // getLocation() returns the IntWritable location contained
 // within the custom data type
 // toString() converts the IntWritable to a String
 Text recordLoc = new Text(val.getLocation().toString());

 // check the map to see if it contains any values associated
 // with the specified key this checks to see to see whether
 // or not a key value has been placed in the hashmap
 // -> if so, then the value is retrieved and appended with
 // the current location
 // -> if not, then it is added as a new entry into the
 // hashmap
 // get(), returns the <value> associated with the specified
 // <key = recordID>
 if (map.get(recordID) != null) { // a <key, value> exists in
 // hashmap

 // create a new Text variable comprised of the retrieved
 // <value> from the hashmap appended with the current
 // values of the loop iteration
 tempList = new Text(map.get(recordID).toString()
 +recordLoc.toString()+",").toString();

 // place the updated <value> in the hashmap assigned to the
 // associated <key>
 // put(), places the specified <value> with the <key> in the
 // hashmap, if the map already has a value associated with
 // the key, it is replaced
 map.put(recordID, new Text(tempList));
 } // end if (<key, value> exists in hashmap)
 else { // the <key, value> does not exist in the hashmap

 // place a new entry in the hashmap
 map.put(recordID, new Text(recordLoc+","));
 } // end else (<key, value> not in hashmap)
 } // end for (each termLocationCustomWritable)

 // create it, an Iterator that will be used to traverse and
 // manipulate the HashMap
 // entrySet(), returns a Set view of the mappings contained in
 // the HashMap
 // iterator(), returns an iterator over the set of elements
 Iterator<Entry<Text, Text>> it = map.entrySet().iterator();

 116

 // create strBuilder, a StringBuilder is a mutable sequence of
 // characters
 StringBuilder strBuilder = new StringBuilder();

 // iterate through all elements contained within the Iterator
 // hasNext(), returns TRUE is the iteration has more elements
 while (it.hasNext()) {

 // create pair, containing the map entry retrieved from the
 // iterator
 // next(), returns the next element in the iteration
 Entry<Text, Text> pair = it.next();

 // append the StringBuilder with the <key, value> contained
 // within pair
 // getKey(), returns the corresponding key of the entry
 // getValue(), returns the corresponding value of the entry
 strBuilder.append(pair.getKey() + "|" + pair.getValue() + "|");

 // remove already retrieved entry from the iterator
 // remove(), removes the last element returned by the iterator
 it.remove(); // avoids a ConcurrentModificationException }
 } // end while(more elements in iterator)

 // send the final key value pair to output collector
 // key value pair is <key, strBuilder>
 // write() generates an output key value pair
 context.write(key, new Text(strBuilder.toString()));
 } // end reduce ()
 } // end WARCIndexCustomLocationReducer

 public static class WARCIndexLocationCustomPartitioner extends
 Partitioner<Text, termLocationCustomWritable> {

 @Override
 public int getPartition(Text key, termLocationCustomWritable value,
 int numPartitions) {
 /*
 * getPartition is the method that returns the partition number for
 * a given key
 */

 // create partitionKey, a String assigned to the value of the
 // provided key
 String partitionKey = key.toString().toLowerCase();

 // this series of if-else statements checks the first character
 // of the provided key and assigns the partitioner based on
 // this value the purpose is to force the reducer output files
 // to be organized by first character (e.g., all terms
 // beginning with 'a' are contained within the same output
 // file)
 if (partitionKey.charAt(0) == '0')
 return 0;

 117

 else if (partitionKey.charAt(0) == '1')
 return 1;
 else if (partitionKey.charAt(0) == '2')
 return 2;
 else if (partitionKey.charAt(0) == '3')
 return 3;
 else if (partitionKey.charAt(0) == '4')
 return 4;
 else if (partitionKey.charAt(0) == '5')
 return 5;
 else if (partitionKey.charAt(0) == '6')
 return 6;
 else if (partitionKey.charAt(0) == '7')
 return 7;
 else if (partitionKey.charAt(0) == '8')
 return 8;
 else if (partitionKey.charAt(0) == '9')
 return 9;
 else if (partitionKey.charAt(0) == 'a')
 return 10;
 else if (partitionKey.charAt(0) == 'b')
 return 11;
 else if (partitionKey.charAt(0) == 'c')
 return 12;
 else if (partitionKey.charAt(0) == 'd')
 return 13;
 else if (partitionKey.charAt(0) == 'e')
 return 14;
 else if (partitionKey.charAt(0) == 'f')
 return 15;
 else if (partitionKey.charAt(0) == 'g')
 return 16;
 else if (partitionKey.charAt(0) == 'h')
 return 17;
 else if (partitionKey.charAt(0) == 'i')
 return 18;
 else if (partitionKey.charAt(0) == 'j')
 return 19;
 else if (partitionKey.charAt(0) == 'k')
 return 20;
 else if (partitionKey.charAt(0) == 'l')
 return 21;
 else if (partitionKey.charAt(0) == 'm')
 return 22;
 else if (partitionKey.charAt(0) == 'n')
 return 23;
 else if (partitionKey.charAt(0) == 'o')
 return 24;
 else if (partitionKey.charAt(0) == 'p')
 return 25;
 else if (partitionKey.charAt(0) == 'q')
 return 26;
 else if (partitionKey.charAt(0) == 'r')
 return 27;
 else if (partitionKey.charAt(0) == 's')

 118

 return 28;
 else if (partitionKey.charAt(0) == 't')
 return 29;
 else if (partitionKey.charAt(0) == 'u')
 return 30;
 else if (partitionKey.charAt(0) == 'v')
 return 31;
 else if (partitionKey.charAt(0) == 'w')
 return 32;
 else if (partitionKey.charAt(0) == 'x')
 return 33;
 else if (partitionKey.charAt(0) == 'y')
 return 34;
 else if (partitionKey.charAt(0) == 'z')
 return 35;
 else // this partition is the catch all for any unspecified
 // character
 return 36;
 } // end getPartition ()
 } // end WARCIndexLocationCustomPartitioner
} // end WARCIndexLocationCustomMap

 119

APPENDIX H. PROJECT INSTALLATION INSTRUCTIONS

In order to generate functioning MapReduce jobs from the source code contained

within this thesis, or provided as a part of the supplemental material, the entirety of the

project files must be properly loaded. The following steps provide instructions on how to

load this thesis as a Maven project into Eclipse:

1. Open Eclipse (see Figure 14).

Figure 14. Screen Shot of Eclipse

2. Select: File -> Import (see Figure 15).

 120

Figure 15. Screen Shot of Import Action

3. Select: Existing Maven Projects -> Next (see Figure 16).

Figure 16. Screen Shot of Selecting Existing Maven Project

 121

4. Select: Browse to Root Directory (see Figure 17).

Figure 17. Screen Shot of Selecting Browse to Root Directory

5. Select: Root Folder -> Open (see Figure 18).

 122

Figure 18. Screen Shot of Selecting Project Root Folder

6. Ensure pom.xml file is checked and select Finish (see Figure 19).

Figure 19. Screen Shot of Selecting POM File and Finishing Import

 123

7. This completes the import process of an existing Maven project (see
Figure 20).

Figure 20. Screen Shot of Project Loaded into Eclipse

 124

THIS PAGE INTENTIONALLY LEFT BLANK

 125

APPENDIX I. PROJECT JAR CREATION INSTRUCTIONS

In order to run a MapReduce job from source code contained within this thesis, or

provided as a part of the supplemental material, the entirety of the project files must be

properly packaged into a JAR file. The following steps provide instructions on how to

create a JAR file using the Maven plugin as a part of Eclipse:

1. Right click on the pom.xml, then select: Run As -> Run Configuration
(see Figure 21).

Figure 21. Screen Shot of Selecting Run Configuration

2. Create a custom Maven Build. On the Main tab: (1) set the Base Directory
for the project and (2) set the Goal to “package” (see Figure 22).

 126

Figure 22. Screen Shot of Main Tab Actions for Creating a Custom Maven
Build

3. Create a custom Maven Build. On the Environment tab: (3) create a
“JAVA_HOME” variable and set the value according the location of
JAVA_HOME on the computer in use (see Figure 23). This step is not
required for successful JAR creation.

Figure 23. Screen Shot of Environment Tab Action for Creating a Custom
Maven Build

 127

4. Select Run (see Figure 22). Results of a successful build will look similar
to that seen in Figure 24.

Figure 24. Screen Shot of Console Illustrating a Successful Build

Note: Once this custom Maven build has been created and saved, it will be available for
future use. Subsequent project builds will only need to re-perform steps (1) and (4).

 128

THIS PAGE INTENTIONALLY LEFT BLANK

 129

APPENDIX J. RUNNING A PROJECT ON AWS

In order to run a MapReduce job on AWS, multiple steps must be taken, from

creating an S3 bucket, loading a custom JAR file, to creating an EC2 cluster to run that

job on. Within this process, there are numerous variable settings that can be selected. The

following steps provide guidance on how to run a custom JAR within AWS:

1. Login to AWS.

2. Select: Services -> S3 (see Figure 25).

Figure 25. Screen Shot of AWS Console with S3 Selected

3. Create bucket: specify Name and Region (see Figure 26).

 130

Figure 26. Screen Shot of S3 Bucket Creation

4. Go to created bucket (see Figure 27).

Figure 27. Screen Shot of S3 Bucket Selected

5. Upload JAR to bucket (see Figure 28 and Figure 29).

 131

Figure 28. Screen Shot of File Upload

Figure 29. Screen Shot of File in S3 Bucket

6. Select: Services -> EMR (see Figure 30).

 132

Figure 30. Screen Shot of AWS Console with EMR Selected

7. Select: Create Cluster (see Figure 31).

Figure 31. Screen Shot of Create Cluster Selected

8. Select: Advanced Options (see Figure 32).

 133

Figure 32. Screen Shot of Advanced Options Selected

9. Setup: Software and Steps (see Figure 33). Required:

 Vendor: Amazon

 Release: emr-4.4.0 (or greater)

 Hadoop 2.7.1 (or greater) checked

 Add step: Custom JAR (see step 10).

 Auto-terminate: checked

 134

Figure 33. Screen Shot of Default Software and Steps Page

10. Add Custom JAR Step (see Figure 34).

Figure 34. Screen Shot of Custom JAR Additional Step Selected

11. Specify JAR steps (see Figure 35).

 Name: (as desired)

 Location: browse to uploaded JAR in S3 bucket (step 5)

 135

 Arguments: <Main Class> <input path> <output path> (as required
by JAR)

 Action on failure: Terminate cluster

Figure 35. Screen Shot of Custom JAR Setup Dialogue

12. Once complete with Steps (9) through (11) select Next (see Figure 36).

Figure 36. Screen Shot of Completed Software and Steps Page with Next
Selected

 136

13. Setup: Hardware (see Figure 37). Once complete select Next. Required:

 Master Instance

 Core Instance(s)

Figure 37. Screen Shot of Hardware Setup Page with Next Selected

14. Setup: General Cluster Settings (see Figure 38). Once complete select
Next. Required:

 Cluster Name: (as desired)

 Logging: (recommended) if selected, choose job S3 bucket

 Debugging: (recommended)

 Termination Protection: (recommended)

 137

Figure 38. Screen Shot of General Cluster Settings Page with Next Selected

15. Setup: Security Options (see Figure 39). Once complete Create Cluster.
No required actions.

Figure 39. Screen Shot of Default Security Page with Create Cluster Selected

16. A screen shot illustrating a successfully created and running cluster is
shown in Figure 40. In order to view log files for job select the JAR step
name (see Figure 40).

 138

Figure 40. Screen Shot of Running Cluster with Custom Step Highlighted

17. A screen shot illustrating JAR step status and log file links is shown in
Figure 41.

Figure 41. Screen Shot of Custom Step Status with Log Files Highlighted

18. A screen shot illustrating the output of a completed job in its respective S3
bucket is shown in Figure 42.

 139

Figure 42. Screen Shot of S3 Bucket with Output of Completed Job

19. A screen shot illustrating the individual output files is shown in Figure 43.

Figure 43. Screen Shot of Reducer Individual Output Files

 140

THIS PAGE INTENTIONALLY LEFT BLANK

 141

APPENDIX K. SUPPLEMENTAL

Included in this section is a list of all supplemental source code and project files

that are available upon request. To obtain a copy of these files, contact the Dudley Knox

Library located on the campus of the Naval Postgraduate School in Monterey, California.

A copy of this information is included in the project files.

A. ORIGINAL CODE FILES

 basicInvertedIndexCount.java

 basicInvertedLocation.java

 basicWordCount.java

 termLocationCustomWritable.java

 WARCCompressURL.java

 WARCCompressURLMap.java

 WARCExtractContentType.java

 WARCExtractContentTypeMap.java

 WARCIndexLocationCustom.java

 WARCIndexLocationCustomMap.java

 WARCWordCount.java

 WARCWordCountMap.java

 WETIndexCount.java

 WETIndexCountMap.java

 WETIndexLocation.java

 WETIndexLocationMap.java

 WETIndexLocationCustom.java

 WETIndexLocationCustomMap.java

 WETIndexRecordLocation.java

 142

 WETIndexRecordLocationMap.java

 WETWordCount.java

 WETWordCountMap.java

 pom.xml

B. CODE FILES FROM ANOTHER SOURCE

The following files were authored by mathijs.kattenberg@surfsara.nl and

obtained from github.com.

 WarcInputFormat.java

 WarcIOConstants.java

 WarcRecordReader.java

 WarcSequenceFileInputFormat.java

 WarcSequenceFileRecordReader.java

 143

LIST OF REFERENCES

[1] X. Wu, X. Zhu, G-Q. Wu, and W. Ding, “Data mining with big data,” Knowl. and
Data Eng, IEEE Trans. On, vol. 26, pp. 97–107, January 2014.

[2] “Common Crawl,” Common Crawl. [Online]. Available:
http://commoncrawl.org/. [Accessed: 01-May-2016].

[3] International Organization for Standardization, “Information and documentation -
The WARC File Format,” ISO 28500, 2009.

[4] Merriam-Webster, “Dictionary and Thesaurus,” 2015. [Online]. Available:
http://www.merriam-webster.com/. [Accessed: 01-May-2016].

[5] D. Laney, “3D data management: Controlling data volume, velocity and variety,”
META Group Research Note, vol. 6, pp. 70, 2001.

[6] V. N. Gudivada, R. Baeza-Yates, and V. V. Raghavan, “Big Data: Promises and
Problems,” Computer, pp. 20-23, March 2015.

[7] S. Ghemawat, H. Gobioff ,and S. Leung, “The google file system,” in ACM
SIGOPS Operating Systems Review, 2003, pp. 29-43.

[8] T. White, Hadoop : The Definitive Guide. 4th ed. Sebastopol, CA: O'Reilly, 2015.

[9] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters, OSDI’04: Sixth symposium on operating system design and
implementation, San Francisco, CA, December, 2004.

[10] “Welcome to Apache™ Hadoop®!,” 2014. [Online]. Available:
http://hadoop.apache.org/. [Accessed: 01-May-2016].

[11] “Intro to Hadoop and MapReduce | Udacity,” Udacity.com, 2011 [Online].
Available: https://www.udacity.com/course/intro-to-hadoop-and-mapreduce--
ud617. [Accessed: 01-May-2016].

[12] “Apache Nutch™,” 2014. [Online]. Available: https://nutch.apache.org/.
[Accessed: 01-May-2016].

[13] “Amazon Web Services (AWS) – Cloud Computing Services,” Amazon Web
Services, 2016 [Online]. Available: https://aws.amazon.com/. [Accessed: 01-May-
2016].

[14] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce. San Rafael,
CA: Morgan & Claypool, 2010.

 144

[15] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge university press Cambridge, 2008.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking:
bringing order to the web.” 1999.

[17] R. Muesal, P. Petrovski, and C. Bizer, “The WebDataCommons microdata, RDFa
and microformat dataset series,” in 13th International Semantic Web Conference,
Riva del Garda, Italy, 2014, pp. 277-292.

[18] C. Bizer, K. Eckert, R. Meusel, H. Mühleisen, M. Schuhmacher, and J. Völker,
“Deployment of rdfa, microdata, and microformats on the web–a quantitative
analysis,” in The Semantic Web–ISWC, Springer Berlin Heidelberg, 2013, pp. 17-
32.

[19] “Amazon S3 Tools: Command Line S3 Client and S3 Backup for Windows,
Linux: s3cmd, s3express,” 2009. [Online]. Available: http://s3tools.org/s3cmd.
[Accessed: 01-May-2016].

[20] “Cyberduck | Libre FTP, SFTP, WebDAV, S3, Backblaze B2 & OpenStack Swift
browser for Mac and Windows,” Cyberduck. [Online]. Available:
https://cyberduck.io/. [Accessed: 01-May-2016].

[21] “Eclipse–The Eclipse Foundation open source community website,” 2016.
[Online]. Available: https://eclipse.org/. [Accessed: 01-May-2016].

[22] B. Porter, J. van Zyl, and O. Lamy, “Maven–Welcome to Apache Maven,” 2002.
[Online]. Available: https://maven.apache.org/. [Accessed: 01-May-2016].

[23] “Sandbox–Hortonworks,” Hortonworks, 2011. [Online]. Available:
https://hortonworks.com/products/sandbox/. [Accessed: 01-May-2016].

[24] “Cloudera Enterprise Downloads,” Cloudera. [Online]. Available:
http://www.cloudera.com/downloads.html. [Accessed: 01-May-2016].

[25] “Oracle VM VirtualBox,” Virtualbox.org. [Online]. Available:
https://www.virtualbox.org/. [Accessed: 01-May-2016].

[26] “JAR File Overview,” 1993. [Online]. Available:
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jarGuide.html.
[Accessed: 01-May-2016].

[27] E. Redmond and K. H. Marbaise, “Maven–POM Reference,” 2002. [Online].
Available: https://maven.apache.org/pom.html. [Accessed: 01-May-2016].

[28] “iipc/webarchive-commons,” GitHub, 2016. [Online]. Available:
https://github.com/iipc/webarchive-commons. [Accessed: 01-May-2016].

 145

[29] “JWAT–Java Web Archive Toolkit–SBForge Confluence,” Sbforge.org. [Online].
Available: https://sbforge.org/display/JWAT/JWAT. [Accessed: 01-May-2016].

[30] “Lesson: Regular Expressions (The Java™ Tutorials > Essential Classes),” 1995.
[Online]. Available: https://docs.oracle.com/javase/tutorial/essential/regex/.
[Accessed: 01-May-2016].

[31] Internet Engineering Task Force, “Hypertext Transfer Protocol - HTTP/1.1,” RFC
2616, 1999.

[32] J. Hedley, “jsoup Java HTML Parser, with best of DOM, CSS, and jquery,” 2009.
[Online]. Available: https://jsoup.org/. [Accessed: 01-May-2016].

[33] “Amazon Elastic MapReduce (EMR)–Amazon Web Services,” Amazon Elastic
MapReduce, 2016. [Online]. Available:
https://aws.amazon.com/elasticmapreducep/. [Accessed: 01-May-2016].

[34] “Java heap space–Plumbr,” 2016. [Online]. Available:
https://plumbr.eu/outofmemoryerror/java-heap-space. [Accessed: 01-May-2016].

[35] “Tuning Java Virtual Machines (JVMs),” 2016. [Online]. Available:
https://docs.oracle.com/cd/E13222_01/wls/docs81/perform/JVMTuning.html.
[Accessed: 01-May-2016].

[36] “Elastic Cloud Compute (EC2) Cloud Server & Hosting–AWS,” Elastic Cloud
Compute, 2016. [Online]. Available: https://aws.amazon.com/ec2/. [Accessed: 01-
May-2016].

 146

THIS PAGE INTENTIONALLY LEFT BLANK

 147

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

